Effet d'une souche de Lactobacillus sur la cinétique d'établissement de Shigella flexneri et d'Escherichia coli dans le tube digestif de souriceaux "Gnotoxéniques." Rôle de l'immunisation des mères

1973 ◽  
Vol 19 (8) ◽  
pp. 1021-1030 ◽  
Author(s):  
R. Ducluzeau ◽  
P. Raibaud

A strain of either Shigella flexneri, Escherichia coli, or each of these two strains with a strain of Lactobacillus is implanted in the digestive tract of different couples of axenic adult mice.Some pregnant mothers are vaccinated with the three strains before implantation. The vaccination does not change the kinetics establishment of all three bacterial strains in either the mothers or the young.Escherichia coli is established at its maximum level in "monoxenic" young mice at day 3 after birth, while Shigella appears slowly and irregularly during the 1st week of life. Both strains are established almost simultaneously in the stomach and intestine of the young mice.Lactobacillus is established at maximum level in the stomach and intestine of "dixenic" young mice at day 1 after birth. In these conditions, Shigella appears slowly, only reaching maximum level at 17 days. This antagonistic effect is especially observed in the stomach of the animals, and in a small measure, in the intestine. The establishment of E. coli is hardly affected by the presence of Lactobacillus, except in the stomach in most young animals.In no case is there interference between Lactobacillus and either one of the two strains after 3 weeks of age.

2018 ◽  
Vol 8 (2) ◽  
pp. 354-364
Author(s):  
A. N. Irkitova ◽  
A. V. Grebenshchikova ◽  
A. V. Matsyura

<p>An important link in solving the problem of healthy food is the intensification of the livestock, poultry and fish farming, which is possible only in the adoption and rigorous implementation of the concept of rational feeding of animals. In the implementation of this concept required is the application of probiotic preparations. Currently, there is an increased interest in spore probiotics. In many ways, this can be explained by the fact that they use no vegetative forms of the bacilli and their spores. This property provides spore probiotics a number of advantages: they are not whimsical, easily could be selected, cultivated, and dried. Moreover, they are resistant to various factors and could remain viable during a long period. One of the most famous spore microorganisms, which are widely used in agriculture, is <em>Bacillus subtilis</em>. Among the requirements imposed to probiotic microorganisms is mandatory – antagonistic activity to pathogenic and conditional-pathogenic microflora. The article presents the results of the analysis of antagonistic activity of collection strains of <em>B. subtilis</em>, and strains isolated from commercial preparations. We studied the antagonistic activity on agar and liquid nutrient medias to trigger different antagonism mechanisms of <em>B. subtilis</em>. On agar media, we applied three diffusion methods: perpendicular bands, agar blocks, agar wells. We also applied the method of co-incubating the test culture (<em>Escherichia coli</em>) and the antagonist (or its supernatant) in the nutrient broth. Our results demonstrated that all our explored strains of <em>B. subtilis</em> have antimicrobial activity against a wild strain of <em>E. coli</em>, but to varying degrees. We identified strains of <em>B. subtilis</em> with the highest antagonistic effect that can be recommended for inclusion in microbial preparations for agriculture.</p><p><em><br /></em><em></em></p>


2014 ◽  
Vol 77 (7) ◽  
pp. 1212-1218 ◽  
Author(s):  
BURTON BLAIS ◽  
MYLÈNE DESCHÊNES ◽  
GEORGE HUSZCZYNSKI ◽  
MARTINE GAUTHIER

A simple immunoenzymatic enterohemorrhagic Escherichia coli (EHEC) colony check (ECC) assay was developed for the presumptive identification of priority EHEC colonies isolated on plating media from enrichment broth cultures of foods. With this approach, lipopolysaccharide extracted from a colony is spotted on the grid of a polymyxin-coated polyester cloth strip, and bound E. coli serogroup O26, O45, O103, O111, O121, O145, and O157 antigens are subsequently detected by sequential reactions with a pool of commercially available peroxidase-conjugated goat antibodies and tetramethylbenzidine substrate solution. Each strip can accommodate up to 15 colonies, and test results are available within 30 min. Assay performance was verified using colonies from a total of 73 target EHEC isolates covering the range of designated priority serogroups (all of which were reactive), 41 nontarget E. coli isolates including several nontarget Shiga toxin–producing E. coli serogroups (all unreactive), and 33 non–E. coli strains (all unreactive except two bacterial strains possessing O-antigenic structures in common with those of the priority EHEC). The ECC assay was reactive with target colonies grown on several types of selective and nonselective plating media designed for their cultivation. These results support the use of the ECC assay for high-throughput screening of colonies isolated on plating media for detecting priority EHEC strains in foods.


2021 ◽  
Author(s):  
Donovan H Parks ◽  
Maria Chuvochina ◽  
Peter R Reeves ◽  
Scott A Beatson ◽  
Philip Hugenholtz

Members of the genus Shigella have high genomic similarity to Escherichia coli and are often considered to be atypical members of this species. In an attempt to retain Shigella species as recognizable entities, they were reclassified as Escherichia species in the Genome Taxonomy Database (GTDB) using an operational average nucleotide identity (ANI)-based approach nucleated around type strains. This resulted in nearly 80% of E. coli genomes being reclassified to new species including the common laboratory strain E. coli K-12 (to 'E. flexneri') because it is more closely related to the type strain of Shigella flexneri than it is to the type strain of E. coli. Here we resolve this conundrum by treating Shigella species as later heterotypic synonyms of E. coli, present evidence supporting this reclassification, and show that assigning E. coli/Shigella strains to a single species is congruent with the GTDB-adopted genomic species definition.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Thi-Diem Bui ◽  
Quang-Liem Nguyen ◽  
Thi-Bich Luong ◽  
Van Thuan Le ◽  
Van-Dat Doan

In this study, Mn-doped ZnSe/ZnS core/shell quantum dots (CSQDs) were synthesized in aqueous solution using polyethylene glycol as a surface stabilizer and successfully applied in the detection of Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA) for the first time. The CSQDs were conjugated with anti-E. coli antibody and anti-MRSA antibody via protein A supported by 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide hydrochloride for fluorescent labeling of the intact bacterial cells. The detection was performed for the bacterial strains cultivated in Luria-Bertani liquid medium. The obtained results indicate that E. coli O157:H7 and MRSA can be detected within 30 min at a high sensitivity of 101 CFU/mL. This labeling method based on the highly fluorescent CSQDs may have great potential for use in the food industry to check and prevent outbreaks of foodborne illness.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S287-S287
Author(s):  
Geoffrey Cheminet ◽  
Patrice Nordmann ◽  
Francoise Chau ◽  
Nicolas Kieffer ◽  
Katell Peoc’h ◽  
...  

Abstract Background A strategy used by bacterial strains to resist β-lactam antibiotics is the expression of metallo-β-lactamases (MBL) requiring zinc for activity. The use of a zinc chelator may restore carbapenem activity against MBL-producing Enterobacteriaceae. DMSA is a heavy metal chelator approved in humans with a satisfactory safety record. Our objective was to evaluate the activity of DMSA in combination with carbapenems, in vitro and in a fatal murine peritonitis model, against MBL-producing Escherichia coli. Methods Isogenic derivatives of wild-type E. coli CFT073 producing the MBL NDM-1, VIM-2, IMP-1, and the serine carbapenemases OXA-48 and KPC-3 were constructed. Minimum inhibitory concentrations (MICs) of imipenem, meropenem, and ertapenem were determined against each strain alone or in combination with DMSA. Mice were infected with E. coli CFT073 or NDM-1 and treated intraperitoneally for 24 hours with imipenem 100 mg/kg every 4 hours, DMSA 200 mg/kg every 4 hours, or both. Mice survival rates and bacterial counts in peritoneal fluid (PF) and spleen were assessed at 24 hours. Results In vitro, DMSA in combination with each carbapenem permitted a significant decrease of the MICs against all MBL-producing strains, in a concentration-dependent manner. The maximum effect was found for the NDM-1 strain with a 6- to 8-fold MIC reduction, depending on the carbapenem used. NDM-1 strain became susceptible to carbapenems with concentrations of DMSA ≥6 mM. Increasing zinc concentrations above 1 mg/L (average human plasma concentration) did not alter this effect. No benefit of DMSA was observed against non-MBL strains. In vivo, when used alone, the DMSA regimen was not toxic in uninfected mice and ineffective against NDM-1-infected mice (100% mortality). Combination of imipenem and DMSA significantly reduced bacterial counts in PF and spleen as compared with imipenem alone (P < 0.001), and reduced mortality, although not significantly (11% vs. 37%, respectively, P = 0.12). No benefit of the combination was observed against CFT073. Conclusion DMSA is highly effective in vitro in reducing carbapenems MICs against MBL-producing E. coli and appears as a promising strategy in combination with carbapenems for the treatment of NDM-1-related infections. Disclosures All authors: No reported disclosures.


2006 ◽  
Vol 72 (4) ◽  
pp. 3032-3035 ◽  
Author(s):  
K. J. O'Keefe ◽  
N. M. Morales ◽  
H. Ernstberger ◽  
G. Benoit ◽  
P. E. Turner

ABSTRACT Although laboratory dependence is an acknowledged problem in microbiology, it is seldom intensively studied or discussed. We demonstrate that laboratory dependence is real and quantifiable even in the popular model Escherichia coli. Here laboratory effects alter the equilibrium composition of a simple community composed of two strains of E. coli. Our data rule out changes in the bacterial strains, chemical batches, and human handling but implicate differences in growth medium, especially the water component.


2007 ◽  
Vol 75 (5) ◽  
pp. 2399-2407 ◽  
Author(s):  
Miriam Schlee ◽  
Jan Wehkamp ◽  
Artur Altenhoefer ◽  
Tobias A. Oelschlaeger ◽  
Eduard F. Stange ◽  
...  

ABSTRACT Human β-defensin 2 (hBD-2) is an inducible antimicrobial peptide synthesized by the epithelium to counteract bacterial adherence and invasion. Proinflammatory cytokines, as well as certain bacterial strains, have been identified as potent endogenous inducers. Recently, we have found that hBD-2 induction by probiotic Escherichia coli Nissle 1917 was mediated through NF-κB- and AP-1-dependent pathways. The aim of the present study was to identify the responsible bacterial factor. E. coli Nissle 1917 culture supernatant was found to be more potent than the pellet, indicating a soluble or shed factor. Chemical analysis demonstrated the factor to be heat resistant and proteinase digestible. Several E. coli Nissle 1917 deletion mutants were constructed and tested for their ability to induce hBD-2 expression in Caco-2 cells. Deletion mutants for flagellin specifically exhibited an impaired immunostimulatory capacity. Reinsertion of the flagellin gene restored the induction capacity to normal levels. Isolated flagellin from E. coli Nissle 1917 and from Salmonella enterica serovar Enteritidis induced hBD-2 mRNA significantly in contrast to the flagellin of the apathogenic E. coli strain ATCC 25922. H1 flagellin antiserum abrogated hBD-2 expression induced by flagellin as well as E. coli Nissle 1917 supernatant, confirming that flagellin is the major stimulatory factor of E. coli Nissle 1917.


2002 ◽  
Vol 68 (5) ◽  
pp. 2316-2325 ◽  
Author(s):  
Nathalie Pradel ◽  
Sabine Leroy-Setrin ◽  
Bernard Joly ◽  
Valérie Livrelli

ABSTRACT To identify Shiga toxin-producing Escherichia coli genes associated with severe human disease, a genomic subtraction technique was used with hemolytic-uremic syndrome-associated O91:H21 strain CH014 and O6:H10 bovine strains. The method was adapted to the Shiga toxin-producing E. coli genome: three rounds of subtraction were used to isolate DNA fragments specific to strain CH014. The fragments were characterized by genetic support analysis, sequencing, and hybridization to the genome of a collection of Shiga toxin-producing E. coli strains. A total of 42 fragments were found, 19 of which correspond to previously identified unique DNA sequences in the enterohemorrhagic E. coli EDL933 reference strain, including 7 fragments corresponding to prophage sequences and others encoding candidate virulence factors, such a SepA homolog protein and a fimbrial usher protein. In addition, the subtraction procedure yielded plasmid-related sequences from Shigella flexneri and enteropathogenic and Shiga toxin-producing E. coli virulence plasmids. We found that lateral gene transfer is extensive in strain CH014, and we discuss the role of genomic mobile elements, especially bacteriophages, in the evolution and possible transfer of virulence determinants.


2001 ◽  
Vol 67 (10) ◽  
pp. 4934-4938 ◽  
Author(s):  
Sandra L. McLellan ◽  
Annette D. Daniels ◽  
Alissa K. Salmore

ABSTRACT Bacterial strains were isolated from beach water samples using the original Environmental Protection Agency method for Escherichia coli enumeration and analyzed by pulsed-field gel electrophoresis (PFGE). Identical PFGE patterns were found for numerous isolates from 4 of the 9 days sampled, suggesting environmental replication. 16S rRNA gene sequencing, API 20E biochemical testing, and the absence of β-glucuronidase activity revealed that these clonal isolates were Klebsiella, Citrobacter, and Enterobacter spp. In contrast, 82% of the nonclonal isolates from water samples were confirmed to be E. coli, and 16% were identified as other fecal coliforms. These nonclonal isolates produced a diverse range of PFGE patterns similar to those of isolates obtained directly from untreated sewage and gull droppings. β-Glucuronidase activity was critical in distinguishingE. coli from other fecal coliforms, particularly for the clonal isolates. These findings demonstrate that E. coli is a better indicator of fecal pollution than fecal coliforms, which may replicate in the environment and falsely elevate indicator organism levels.


2003 ◽  
Vol 9 (5) ◽  
pp. 353-358 ◽  
Author(s):  
O. Sagdic ◽  
A. G. Karahan ◽  
M. Ozcan ◽  
G. Ozkan

Eighteen extracts of spices commonly consumed worldwide and grown naturally in Turkey were tested against twenty three bacterial strains to compare their antibacterial effects with eleven antibiotics. Eight pathogens and fifteen lactobacilli isolated from chick intestine were used as the test microorganisms. Pathogens (six different Staphylococcus aureus strains, Escherichia coli ATCC 25922 and Yersinia enterocolitica ATCC 1501) were grown in Nutrient broth and lactobacilli in MRS broth. Hop extracts formed inhibition zones against S. aureus strains of upto 36 mm. Inhibitory effects of hop extracts against S. aureuswere generally higher than that of erythromycin as antibiotic. Helichrysum compactum extract produced an inhibition zone of 23mm to E. coli ATCC 25922 and 26mm to Y. enterocolitica ATCC 1501. Helichrysum compactum extract inhibited the growth of Y. enterocolitica ATCC 1501 more than other spice extracts. While inhibition zones of these extracts against lactobacilli were found smaller than on S. aureus strains, inhibition zones of the same extracts against lactobacilli were found similar to those of E. coli ATCC 25922 and Y. enterocolitica ATCC 1501.


Sign in / Sign up

Export Citation Format

Share Document