The cytoprotective effects of bilirubin and biliverdin on rat hepatocytes and human erythrocytes and the impact of albumin

1991 ◽  
Vol 69 (12) ◽  
pp. 828-834 ◽  
Author(s):  
Tai-Wing Wu ◽  
Doug Carey ◽  
Jun Wu ◽  
Hiroshi Sugiyama

The hypothesis that unconjugated bilirubin and biliverdin are cytoprotective antioxidants has been examined for the first time in systems containing cells. In primary rat hepatocytes exposed to xanthine oxidase and hypoxanthine, bilirubin (0–60 μM) failed to prolong cell survival. In contrast, biliverdin (20–100 μM) markedly delayed hepatocyte necrosis in a concentration-dependent manner. When 0.3 mM of albumin was present, bilirubin (0–50 μM) became protective of hepatocytes, while biliverdin was less dramatically enhanced in its cytoprotective effect. In human erythrocytes exposed to peroxyl radicals, bilirubin and biliverdin inhibited 50% cell lysis at lower concentrations than Trolox and ascorbate, respectively. Albumin alone appeared less cytoprotective in red cells than in hepatocytes, but its presence enhanced the effects of both pigments on erythrocytes. Of probable physiologic relevance, bilirubin with albumin present or biliverdin alone protected hepatocytes substantially (and to a lesser extent red cells) at the normal blood levels of bilirubin (3.4–26 μM). Moreover, the fact that the pigments are cytoprotective at higher bilirubin levels (e.g., 50–100 μM) tempts the speculation that they may be circulating cytoprotectors of overlooked importance in jaundice.Key words: cytoprotection, biliverdin, bilirubin, albumin.

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1311
Author(s):  
Magdalena Chmur ◽  
Andrzej Bajguz

Brassinolide (BL) represents brassinosteroids (BRs)—a group of phytohormones that are essential for plant growth and development. Brassinazole (Brz) is as a synthetic inhibitor of BRs’ biosynthesis. In the present study, the responses of Wolffia arrhiza to the treatment with BL, Brz, and the combination of BL with Brz were analyzed. The analysis of BRs and Brz was performed using LC-MS/MS. The photosynthetic pigments (chlorophylls, carotenes, and xanthophylls) levels were determined using HPLC, but protein and monosaccharides level using spectrophotometric methods. The obtained results indicated that BL and Brz influence W. arrhiza cultures in a concentration-dependent manner. The most stimulatory effects on the growth, level of BRs (BL, 24-epibrassinolide, 28-homobrassinolide, 28-norbrassinolide, catasterone, castasterone, 24-epicastasterone, typhasterol, and 6-deoxytyphasterol), and the content of pigments, protein, and monosaccharides, were observed in plants treated with 0.1 µM BL. Whereas the application of 1 µM and 10 µM Brz caused a significant decrease in duckweed weight and level of targeted compounds. Application of BL caused the mitigation of the Brz inhibitory effect and enhanced the BR level in duckweed treated with Brz. The level of BRs was reported for the first time in duckweed treated with BL and/or Brz.


Drug Research ◽  
2019 ◽  
Vol 69 (12) ◽  
pp. 665-670 ◽  
Author(s):  
Mohammad Jalili-Nik ◽  
Hamed Sabri ◽  
Ehsan Zamiri ◽  
Mohammad Soukhtanloo ◽  
Mostafa Karimi Roshan ◽  
...  

AbstractGlioblastoma multiforme (GBM) is the fatal type of astrocytic tumors with a survival rate of 12 months. The present study, for the first time, evaluated the cytotoxic impacts of Ferula latisecta (F. latisecta) hydroalcoholic extract on U87 GBM cell line. The MTT assay measured the cellular toxicity following 24- and 48 h treatment with various doses of F. latisecta (0–800 μg/mL). Apoptosis was evaluated by an Annexin V/propidium iodide (PI) staining 24 h after treatment by F. latisecta. Moreover, to determine the cellular metastasis of U87 cells, we used a gelatin zymography assay (matrix metalloproteinase [MMP]-2/-9 enzymatic activity). The outcomes showed that F. latisecta mitigated the viability of U87 cells in a concentration- and time-dependent manner with IC50 values of 145.3 and 192.3 μg/mL obtained for 24- and 48 h treatments, respectively. F. latisecta induced apoptosis in a concentration-dependent manner after 24 h. Also, MMP-9 activity was significantly decreased following 24 h after treatment concentration-dependently with no change in MMP-2 enzymatic activity. This study showed that F. latisecta induced cytotoxicity and apoptosis, and mitigated metastasis of U87 GBM cells. Hence, F. latisecta could be beneficial as a promising natural herb against GBM after further studies.


2021 ◽  
Vol 16 (9) ◽  
pp. 1934578X2110331
Author(s):  
Hua-Sheng Zhang ◽  
Yong-Ming Yan ◽  
Dai-Wei Wang ◽  
Qing Lv ◽  
Yong-Xian Cheng ◽  
...  

Two new glycosides, periplanosides A (1) and B (2), 3 compounds reported from a natural source for the first time (3 − 5), and 6 known compounds 6 − 11 were isolated from the ethanol extract of Periplaneta americana (Linnaeus). Their structures, including absolute configurations, were unambiguously identified by comprehensive spectroscopic and chemical methods. Compound 3 is a racemate whose enantiomers were purified by chiral high-performance liquid chromatography . The biological evaluation results showed that compound 7 (0 − 20 μM) did not affect the viability of RAW264.7 cells and could effectively inhibit the production of interleukin-6 stimulated by lipopolysaccharide in a concentration-dependent manner, indicating the potential to develop novel agents against inflammation-related diseases.


2019 ◽  
Vol 14 (1) ◽  
pp. 1934578X1901400
Author(s):  
Lilia Cherigo ◽  
Sergio Martínez-Luis

In our continuous search for α-glucosidase inhibitors, three active pentacyclic triterpenes were isolated from stem bark samples of the Panamanian mangrove Pelliciera rhizophorae Triana & Planchon. These compounds were identified by both spectroscopic and spectrometric analysis. Of the isolated compounds, only betulinic acid has been previously isolated from P. rhizophorae leaves while both betulin (IC50 2.09 μM) and lupeol (IC50 0.58 μM) were isolated from this plant for the first time. All three pentacyclic triterpenes inhibited the α-glucosidase enzyme in a concentration-dependent manner, and their inhibitory activity was higher than that of the antidiabetic drug acarbose (IC50 241.6 μM). Kinetic analysis established that betulin and lupeol acted as competitive inhibitors. Finally, docking analysis suggested that all three triterpenes bind at the same site as acarbose does in the human intestinal α-glucosidase (PDB: 3TOP). This work contributes further evidence similar to previous studies that point out that the aerial parts of P. rhizophorae might be potential agents in controlling hyperglycemia in diabetic persons.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1087 ◽  
Author(s):  
Jian Yang ◽  
Bin Wang ◽  
Chao-feng Zhang ◽  
Xiang-hong Xu ◽  
Mian Zhang

Cynatratoside A (CyA) is a C21 Steroidal glycoside with pregnane skeleton isolated from the root of Cynanchum atratum Bunge (Asclepiadaceae). This study aimed to investigate the effects of CyA on concanavalin A (Con A)-induced autoimmune hepatitis (AIH) and the underlying mechanism. CyA was orally administered to mice at 10 and 40 mg/kg 8 h before and 1 h after Con A treatment. The effects of CyA on Con A-induced spleen and liver in mice were assessed via histopathological changes, T lymphocyte amounts and the expressions of IL-1β and ICAM-1. Con A-induced L-02 hepatocytes were used to evaluate whether CyA (0.1–10 μM) can directly protect hepatocytes from cytotoxicity and the possible mechanism. The results revealed that CyA treatment could significantly improve the histopathological changes of spleen and liver, reduce the proliferation of splenic T lymphocytes, and decrease the expressions of IL-1β and ICAM-1 in liver. The experiment in vitro showed that CyA inhibited Con A-induced hepatotoxicity in a concentration-dependent manner. CyA (10 μM) significantly increased/decreased the expression of Bcl-2/Bax and reduced the levels of cleaved caspases-9 and -3. Our study demonstrated for the first time that CyA has a significant protective effect on Con A-induced AIH by inhibiting the activation and adhesion of T lymphocytes and blocking hepatocyte apoptosis.


1999 ◽  
Vol 277 (5) ◽  
pp. C870-C877 ◽  
Author(s):  
Esther Titos ◽  
Nan Chiang ◽  
Charles N. Serhan ◽  
Mario Romano ◽  
Joan Gaya ◽  
...  

Novel aspirin (ASA)-triggered 15-epi-lipoxins (ATL) comprise new potent bioactive eicosanoids that may contribute to the therapeutic effect of this drug. ATL biosynthesis is initiated by ASA acetylation of cyclooxygenase (COX)-2 and was originally identified during the interaction of leukocytes with either endothelial or epithelial cells. Here, we examined ATL biosynthesis in rat hepatocytes either alone or in coincubation with nonparenchymal liver cells (NPC) and in liver homogenates from ASA-treated rats. Rat hepatocytes and CC-1 cells, a rat hepatocyte cell line, displayed COX-1 but not COX-2 mRNA expression and predominantly produced thromboxane A2(TXA2) and 15-hydroxyeicosatetraenoic acid (15-HETE). In these cells, ASA shifted the arachidonic acid metabolism from TXA2 to 15-HETE in a concentration-dependent manner. In contrast, neither indomethacin, ibuprofen, valeryl salicylate, nor nimesulide was able to trigger 15-HETE biosynthesis. SKF-525A, a cytochrome P-450 inhibitor, significantly reduced the effect of ASA on 15-HETE biosynthesis. Furthermore, phenobarbital, a potent inducer of cytochrome P-450 activity, further increased ASA-induced 15-HETE production. ASA treatment of hepatocyte-NPC coincubations resulted in the generation of significant amounts of ATL. In addition, in vivo experiments demonstrated augmented hepatic levels of 15-epi-lipoxin A4 in ASA-treated rats. Taken together and considering that ASA is hydrolyzed on its first pass through the portal circulation, these data indicate that, during ASA's consumption, liver tissue generates biologically relevant amounts of ATL by COX-2-independent mechanisms.


2000 ◽  
Vol 11 (10) ◽  
pp. 3315-3327 ◽  
Author(s):  
Matthew Wawersik ◽  
Pierre A. Coulombe

Injury to the skin results in an induction of keratins K6, K16, and K17 concomitant with activation of keratinocytes for reepithelialization. Forced expression of human K16 in skin epithelia of transgenic mice causes a phenotype that mimics several aspects of keratinocyte activation. Two types of transgenic keratinocytes, with forced expression of either human K16 or a K16-C14 chimeric cDNA, were analyzed in primary culture to assess the impact of K16 expression at a cellular level. High K16-C14-expressing and low K16-expressing transgenic keratinocytes behave similar to wild type in all aspects tested. In contrast, high K16-expressing transgenic keratinocytes show alterations in plating efficiency and calcium-induced differentiation, but proliferate normally. Migration of keratinocytes is reduced in K16 transgenic skin explants compared with controls. Finally, a subset of high K16-expressing transgenic keratinocytes develops major changes in the organization of keratin filaments in a time- and calcium concentration-dependent manner. These changes coincide with alterations in keratin content while the steady-state levels of K16 protein remain stable. We conclude that forced expression of K16 in progenitor skin keratinocytes directly impacts properties such as adhesion, differentiation, and migration, and that these effects depend upon determinants contained within its carboxy terminus.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
François Gagné

The purpose of this study was to examine the effects of dissolved and particulate compounds on quorum sensing in the marine luminescent bacterium Aliivibrio fisheri. Bacteria were exposed to increasing concentrations of CuSO4 (Cu2+), gadolinium chloride (Gd3+), 20-nm silver nanoparticles (nanoAg) and 1-3 μm microplastic polyethylene beads for 250 min. During this period, luminescence measurements were taken at 5-min intervals. Toxicity was first examined by measuring luminescence output at 5-min and 30-min incubation time. Based on the effective concentration that decreases luminescence by 20% (EC20), the compounds were toxic at the following concentrations in decreasing toxicity: Cu2+ (3.2 mg/L) < nanoAg (3.4 mg/L, reported) < Gd3+ (34 mg/L) < microplastics (2.6 g/L). The data revealed that luminescence changed non-linearly over time. In control bacteria, luminescence changed at eight specific major frequencies between 0.04 and 0.27 cycle/min after Fourier transformation of time-dependent luminescence data. The addition of dissolved Cu2+ and Gd3+ eliminated the amplitude changes at these frequencies in a concentration-dependent manner, indicating loss of quorum sensing between bacteria at concentrations below EC20. In the presence of nanoAg and microplastic beads, the decreases in amplitudes were modest but compressed the luminescence profiles, with shorter frequencies appearing at concentrations well below EC20. Thus, loss of communication between bacteria occurs at non-toxic concentrations. In addition, with exposure to a mixture of the above compounds at concentrations that do not produce effects for Gd3+, nanoAg and microplastics, Cu2+ toxicity was significantly enhanced, suggesting synergy. This study revealed for the first time that small microplastic particles and nanoparticles can disrupt quorum sensing in marine bacteria.


2021 ◽  
Author(s):  
Hoa Quynh Do ◽  
Carla M Bassil ◽  
Elizabeth I Andersen ◽  
Michaela Jansen

The Proton-Coupled Folate Transporter (PCFT) is a transmembrane transport protein that controls the absorption of dietary folates in the small intestine. PCFT also mediates uptake of chemotherapeutically used antifolates into tumor cells. PCFT has been identified within lipid rafts observed in phospholipid bilayers of plasma membranes, a micro environment that is altered in tumor cells. The present study aimed at investigating the impact of different lipids within Lipid-protein nanodiscs (LPNs), discoidal lipid structures stabilized by membrane scaffold proteins, to yield soluble PCFT expression in an E. coli lysate-based cell-free transcription/translation system. In the absence of detergents or lipids, we observed PCFT quantitatively as precipitate in this system. We then explored the ability of LPNs to support solubilized PCFT expression when present during in-vitro translation. LPNs consisted of either dimyristoyl phosphatidylcholine (DMPC), palmitoyl-oleoyl phosphatidylcholine (POPC), or dimyristoyl phosphatidylglycerol (DMPG). While POPC did not lead to soluble PCFT expression, both DMPG and DMPC supported PCFT translation directly into LPNs, the latter in a concentration dependent manner. The results obtained through this study provide insights into the lipid preferences of PCFT. Membrane-embedded or solubilized PCFT will enable further studies with diverse biophysical approaches to enhance the understanding of the structure and molecular mechanism of folate transport through PCFT.


Author(s):  
Dursun Guenduez ◽  
Christian Tanislav ◽  
Daniel Sedding ◽  
Mariana Parahuleva ◽  
Sentot Santoso ◽  
...  

Platelet P2Y12 is an important ADP receptor that is involved in agonist-induced platelet aggregation and is a valuable target for the development of anti-platelet drugs. Here we characterise the effects of thio-analogues of uridine triphosphate (UTP) on ADP-induced platelet aggregation. Using human platelet-rich plasma we demonstrate that UTP inhibits P2Y12 but not P2Y1 receptors and antagonises 10 &mu;M ADP-induced platelet aggregation in a concentration-dependent manner with an IC50 value of ~250 &mu;M. An 8-fold higher platelet inhibitory activity was observed with a 2-thio analogue of UTP (2S-UTP), with an IC50 of 30 &mu;M. The 4-thio analogue (4S-UTP) with an IC50 of 7.5 &mu;M was 33-fold more effective. A 3-fold decrease in inhibitory activity, however, was observed by introducing an isobutyl group at the 4S- position. A complete loss of inhibition was observed with thio-modification of the&nbsp;&gamma; phosphate of the sugar moiety, which yields an enzymatically stable analogue. The interaction of UTP analogues with P2Y12 receptors was verified by P2Y12 receptor binding and cAMP assays. These novel data demonstrate for the first time that 2- and 4-thio analogues of UTP are potent P2Y12 receptor antagonists that may be useful for therapeutic intervention.


Sign in / Sign up

Export Citation Format

Share Document