Retention coefficients and thermal release profiles of ion-injected argon from silicates and iron

1970 ◽  
Vol 48 (12) ◽  
pp. 1472-1479
Author(s):  
Harry C. Lord III

Thermal release profiles and retention coefficients of injected argon ions were investigated as functions of substrate composition and prior ion-irradiation history. Samples of forsterite, enstatite, oligoclase, obsidian, and cold-rolled steel were irradiated with various sequences of 1 keV H+, 4 keV He+, and 40 keV Ar+. The release temperature of the maximum argon concentration was found to be a function of incident Ar+ dose and pre-irradiation history but not substrate composition. The hydrogen or helium pre-irradiation converted the volume diffusion argon release to a low temperature defect diffusion release. An increase in the incident dose of Ar+ ions resulted in increasing the percentage of the argon released by defect diffusion, and also decreased the argon retention coefficient.

1999 ◽  
Vol 585 ◽  
Author(s):  
S. Matsuo ◽  
M. Yamamoto ◽  
T. Sadoh ◽  
T. Tsurushima ◽  
D. W. Gao ◽  
...  

AbstractEffects of ion-irradiation on oxidation of silicon at low temperatures (130°C) in an argon and oxygen mixed plasma excited by electron cyclotron resonance (ECR) interaction are investigated. First, dependence of energy and flux of incident ions on the flow rate and the microwave power is evaluated. It is shown that the flow rate and the microwave power are key parameters for controlling the energy and the flux of incident ions, respectively. Second, growth kinetics of the oxide films are studied. The growth rate depends on the energy and the flux of argon ions irradiated to the substrate, and the growth thickness increases proportionally to the root square of the oxidation time. Thus, the growth rate is limited by diffusion of oxidants enhanced by irradiation with argon ions. The effect of substrate bias on oxidation characteristics is also discussed. The electrical properties of the oxide films are improved by increasing the bias. The improvement is due to the reduction of damage at the surface of the substrate induced by the irradiation.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1243
Author(s):  
Anatoly M. Borisov ◽  
Valery A. Kazakov ◽  
Eugenia S. Mashkova ◽  
Mikhail A. Ovchinnikov ◽  
Sergey N. Grigoriev ◽  
...  

The graphitization and surface growth of synthetic diamonds by high-fluence irradiation with 30 keV argon and carbon ions have been experimentally studied. scanning electron microscope (SEM) and atomic force microscope (AFM) show removal of traces of mechanical polishing. The ion-induced roughness does not exceed 20 nm. Raman spectroscopy and the measurement of electrical conductivity confirm the graphitization of the surface layer when irradiated with argon ions at the temperature of 230 °C and the diamond structure of the synthesized layer when irradiated with carbon ions at the temperature of 650 °C.


1988 ◽  
Vol 119 ◽  
Author(s):  
Guoan Cheng ◽  
Baixin Liu ◽  
Hengde Li

AbstractThe interfacial adhesion of Ti films on SiO2 substrate was studied by room temperature argon ion irradiation. Range of ion energy was chosen from 100 to 300 keV. Adhesive strength was measured by scratching test. For Ti/SiO2 pair irradiated by 100 keV argon ions, the adhesion was easier to enhance and much greater strength was obtained than that irradiated by 300 keV argon ions. The threshold dose also increased with the increasing of ion energy. The adhesive strength and the threshold dose increased when the metallizing temperatures were higher. Rutherford backscattering spectra(RBS) showed that a transition layer of about 10 nm thick was formed in Ti/SiO2 interface region after irradiation to a dose of 5X1016 Ar/cm2, indicating some chemical reaction has probably taken place. The experimental results are discussed in terms of thermodynamics of solids.


1998 ◽  
Vol 527 ◽  
Author(s):  
G. Aggarwal ◽  
P. Sen

ABSTRACTWe report study of recovery dynamics, followed by in-situ resistivity measurement, after 100 MeV oxygen ion irradiation in cold rolled Fe at 300K. Scaling behavior with microstructural density and temperature of sample has been used to establish stress induced defects formed during irradiation as a new type of sink. The dynamics after irradiation has been shown to be due to migration of defects to two types of sinks i.e. stress induced defect as variable sinks and internal surfaces as fixed sinks.


Author(s):  
M. Lerme ◽  
M.O. Ruault

Irradiations by rare gas ions of 10 to 50 keV have been performed in nickel [10 ppm impurity) at temperatures between 100 and 500 K. The clusters have been observed “in situ” in a conventional electron microscope during irradiation(1).1)Dose effect - Problems of cascade efficiency - For Argon ions of 25 and 50 keV and at irradiation temperatures between 100 and 500 K, the variation of the cluster density as a function of the dose is the same [see fig. 1). Two points are of interest :-the existence of a dose threshold (do) below which no defect is detectable : do ⋍ 1013ions/cm2;the small number of clusters compared to the number of implanted ions [between 1/1000 and 5/1000). This phenomenon has never been observed before for irradiations with metallic ions(2,3).The most likely interpretation is the creation of microclusters [smaller than 10 Å) due to the presence of rare gas ions.


1994 ◽  
Vol 353 ◽  
Author(s):  
T. J. White ◽  
R. C. Ewing ◽  
L. M. Wang ◽  
J. S. Forrester ◽  
C. Montross

AbstractA transmission electron microscope investigation was made of zirconolites and perovskites irradiated to amorphization with 1 MeV krypton ions using the HVEM-Tandem Facility at Argonne National Laboratory. Three specimens were examined - a prototype zirconolite CaZrTi2O7, a gadolinium doped zirconolite Ca0.75Gd0.50Zr0.75Ti2O7and a uranium doped zirconolite Ca0.75U0.50Zr0.75Ti2O7. The critical amorphization dose Dc was determined at several temperatures between 20K to 675K. Dc was inversely proportional with temperature. For example, pure zirconolite requiring 10x the dose for amorphization at 475K compared with gadolinium zirconolite. Using an Arrhenius plot, the activation energy Ea for annealing in these compounds was found to be 0.129 eV and 0.067 eV respectively. The greater ease of amorphization for the gadolinium sample is probably a reflection of this element’s large cross section for interaction with heavy ions. Uranium zirconolite was very susceptible to damage and amorphised under 4 keV argon ions during the preparation of microscope specimens. In each sample, zirconolite coexisted with minor perovskite, reduced rutile (Magneli phases) and zirconia. These phases were more resistant to ion irradiation than zirconolite. Even for high gadolinium loadings, perovskite (Ca0.8Gd0.2TiO3) was 3-4 times more stable to ion irradiation than the surrounding zirconolite crystals.


1998 ◽  
Vol 527 ◽  
Author(s):  
G. Aggarwal ◽  
P. Sen

ABSTRACTInstabilities arise out of dynamic events and can lead to nonequilibrium (self-organization) processes. Ion irradiation is by nature a nonequilibrium process and hence formation of structures, metastable or otherwise is to be expected. Recently, it has been theoretically predicted that metals under ion irradiation can lead to dissipative structure formation arising out of radiation damage and their subsequent annealing. The possibility of direct observation of such structures in metals, under irradiation, is however reduced due to nonavailability of a large concentration of defects (mainly point defects) at any point of time. In this experimental presentation we show that this can be overcome through the involvement of microstructural imperfections which rearrange during irradiation. Employing microstructurally impure specimens of Fe and Ni, it is shown that heavy ions dissipate their electronic energy to modify atomic arrangements at the microstructure. The increased concentration of defects (atomic rearrangements), amenable to statistical decay is shown to produce structures in the 4-probe resistivity measurements which we assign to dissipative structure formation.


1998 ◽  
Vol 13 (5) ◽  
pp. 1363-1367 ◽  
Author(s):  
S. K. Koh ◽  
J. W. Seok ◽  
S. C. Choi ◽  
W. K. Choi ◽  
H. J. Jung

Ion irradiation on polytetrafluoroethylene (PTFE) has been carried out to improve adhesions to metals and to adhesive cements. Argon ions were irradiated on the polymer, by varying the amount of Ar+ from 1 × 1014 ions/cm2 to 1 × 1017 ions/cm2 at 1 keV, and 4 ml/min of oxygen gas flowed near the polymer surface during the ion irradiation. The wetting angle of water on the PTFE surface was changed from 100° to 70–150°, depending on the ion beam condition. The changes of the wetting angle and effects of Ar+ irradiation in oxygen environment were explained by the changes in surface morphology due to the ion beam irradiation onto PTFE, and formation of a hydrophilic group due to a reaction between the irradiated polymer chain and the blown oxygen. Strongly enhanced adhesion is explained by interlock mechanism, formation of electron acceptor groups on the modified PTFE, and interfacial chemical reactions between the irradiated surface and the deposited materials.


2004 ◽  
Vol 821 ◽  
Author(s):  
Mariya M. Brzhezinskaya ◽  
Eugen M. Baitinger ◽  
Vladimir V. Shnitov ◽  
Aleksey Smirnov

AbstractIn this paper, the results of experiments on irradiation of the singlewall (SWNT) and multiwall carbon nanotube (MWNT) samples by argon ions are presented. They were obtained by reflection electron energy loss spectroscopy and Auger electron spectroscopy.Results indicate the π-plasmon energy Eπ and the full width at half maximum (FWHM) of the plasma peak were sensitive to the dose of ion irradiation. In particular, the π-plasmon energy Eπ decreases and the plasma peak broadens with the increase of the dose of Ar+irradiation.The π-plasmon peak broadening is associated with damage of carbon nanotubes under ion irradiation. Possible causes of the carbon nanotubes deformation and influence of deformation on π-band structure of carbon nanotubes are discussed.


1991 ◽  
Vol 235 ◽  
Author(s):  
Dale E. Alexander ◽  
R. C. Birtcher

ABSTRACTThe effect of Al ion irradiation on the mobility of Xe gas bubbles in Al thin films was investigated. Transmission electron microscopy was used to determine bubble diffusivities in films irradiated and/or annealed at 673K, 723K and 773K. Irradiation increased bubble diffusivity by a factor of 2–9 over that due to thermal annealing alone. The Arrehnius behavior and dose rate dependence of bubble diffusivity are consistent with a radiation enhanced diffusion phenomenon affecting a volume diffusion mechanism of bubble transport.


Sign in / Sign up

Export Citation Format

Share Document