Evaluation of physical properties of several growing media for use in aerial seeding containers

1987 ◽  
Vol 17 (2) ◽  
pp. 165-173 ◽  
Author(s):  
Tanya L. Lennox ◽  
Glen P. Lumis

Several personally blended and commercially prepared growing media were evaluated as potential substrates for coniferous tree seedlings in specialized seeding containers (aerial darts). Water retention curves were developed using a porous pressure plate apparatus. Bark–vermiculite–sand and Ball Growing Mix II retained less water at pressures from 0 to 0.1 MPa than all other media observed. At pressures less than 20 × 10−3 MPa the greatest water retention was in Pro-mix A, while above 33 × 10−3 MPa the greatest water retention was in bark–vermiculite. As the proportion of bark in bark–vermiculite was increased, the air space increased significantly but water retention was unaffected. Addition of a hydrophilic gel to media containing a surfactant significantly increased water retention. The easily available water, water buffering capacity, and air space were unaffected by gel but total porosity increased in some of the media. When the surfactant was excluded the addition of gel at the recommended rate did not significantly increase water retention. As the concentration of gel increased there was an increase in water retention, a linear increase in total porosity, a slight increase in air space, a decrease in easily available water, and no change in water buffering capacity. Media amended with gels of different absorbing capacities retained water similarly, releasing approximately 50% of the absorbed water at pressures less than 10 × 10−3 MPa.

2020 ◽  
Author(s):  
Mika Turunen

<p>Suitability of organic materials as growing media in plant production is dependent on physical properties of the media. Undecomposed Sphagnum moss growing media is an innovative and potentially more sustainable alternative to the commonly used peat-based media. However, the physical properties of the moss media are not comprehensively understood. Furthermore, amending the growing media with biochar has the potential to sequester carbon and enhance the properties of the receiving substance, but biochar impacts on organic growing media properties remain unknown.</p><p>This study aimed to (1) quantify differences in water retention, aeration and pore structure properties of three different low- or non-humified Sphagnum-based growing media with 3D X-ray imaging and conventional physical measurements, (2) determine impacts of intense drying-wetting cycles on their pore structure. Furthermore, we aimed to (3) quantify the 3D pore structure of three different plant-based biochars and (4) demonstrate their impact on moss growing media physical properties.</p><p>The drying of the media occurred in three distinct phases with (1) large changes in the air-filled porosity in the suction range 0.2-3.2 kPa, (2) clearly smaller changes in 3.2-312 kPa and (3) again large changes in 312-1585 kPa. In the phases 2 and 3, the aeration of the media was satisfactory for plant growth, but the amount of easily available water was low. This sets challenges for the suitability of the materials in conditions without regular irrigation. These properties of the moss media were comparable to the peat media. The pore structure of the media was not sensitive to drying-wetting cycles, but the pore size distributions was observed to shift slightly towards smaller pore size classes with increasing decomposition degree and stress impact of the drying-wetting cycles.</p><p>Regarding biochar physical properties, the 3D imaging results demonstrated that irrespective of the feedstock, the major share (0.80-0.94 m<sup>3 </sup>m<sup>-3</sup>) of the biochar pore volume resided in pores with diameters 2-11 µm. Biochar pore properties reflected plant tissue structure of the raw materials. The application of biochar increased the water retention of the growing media in the pore diameter range 1-8 µm. The maximum increase was 0.06 m<sup>3 </sup>m<sup>-3</sup>. This is relevant for plant-available water, which indicates the usability of the biochar amendments.</p><p>From methodological point of view, the value of combining 3D imaging with conventional measurements was shown. The approach revealed how water table continuum between biochar and surrounding growing media affect availability of water stored inside the biochar particles.  The results are based on a recently published article (Turunen et al. 2019) and an accepted manuscript (Turunen et al. 2020).</p><p> </p><p>References:</p><p>Turunen, M., Hyväluoma, J., Heikkinen, J., Keskinen, R., Kaseva, J., Koestel, J. and Rasa, K., 2019. Quantifying Physical Properties of Three Sphagnum-Based Growing Media as Affected by Drying–Wetting Cycles. Vadose Zone Journal, 18:190033. doi:10.2136/vzj2019.04.0033</p><p>Turunen, M., Hyväluoma, J., Heikkinen, J., Keskinen, R., Kaseva, J., Hannula, M. and Rasa, K., 2020. Quantifying the pore structure of different biochars and their impacts on the water retention properties of Sphagnum moss growing media. Accepted for publication (Biosystems Engineering).</p><p> </p>


HortScience ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 874-878 ◽  
Author(s):  
Magdalena Zazirska Gabriel ◽  
James E. Altland ◽  
James S. Owen

Douglas fir [Pseudotsuga menziesii Mirb. (Franco)] bark (DFB), sphagnum peatmoss, and pumice are the most common substrate components used in the Oregon nursery industry. The objective of this study was to document the effect of peat and pumice addition on the physical and hydrological properties of DFB soilless substrates. A secondary objective was to determine if measured properties of mixed soilless substrates can be accurately predicted from the known properties of the individual components. Treatment design was a 3 × 3 factorial with three rates each of sphagnum peatmoss and pumice (0%, 15%, and 30% by vol.) added to DFB. The resulting nine substrates were measured for total porosity, air space, container capacity, and bulk density using porometers. Moisture characteristic curves were generated by measuring water content along a continuous column. Adding pumice to DFB decreased total porosity, container capacity, available water, and water-buffering capacity but increased bulk density. Adding peatmoss to DFB increased total porosity, container capacity, and available water but decreased air space and bulk density. Comparison of predicted values against measured values indicated that bulk density could be predicted reliably; however, all other physical properties could not be accurately predicted.


2019 ◽  
Vol 52 (1) ◽  
pp. 43
Author(s):  
Omid Bahmani

<p><strong> </strong>Tillage is one of the most important practices that have a significant influence on the soil hydro-physical properties. In this study, the impact of the type and number of input variables with five different methods of the Retc model to predicting the moisture retention curve and soil water content in three surfaces tillage NT (No-tillage), CP (Chisel Plough) and MP (Moldboard Plough) and the impact of tillage systems on soil hydro-physical properties were evaluated. According to results, when the field capacity and wilting point moisture was added to input data in Retc to predict the moisture curve model parameters, the EF was increased in MP (0.977, 0.95) and CP (0.891, 0.86) treatments compare the NT (0.665, 0.608). The Mualem–Van Genuchten model can describe satisfactorily the simulation of soil physical properties. The S-index, which was also affected by tillage, was greater than 0.066 in all tillage treatments, indicating good soil physical quality. Results indicated that NT had the highest and lowest values of bulk density (1.55 Mgr.m<sup>-3</sup>) and total available water (TAW) (0.038 m.m<sup>-1</sup>), respectively, and the differences between NT and MP in total porosity was significant. Overall, in most soil layers, tillage practices affected the porosity and total available water in the order MP &gt; CP &gt; NT. Water retention curves indicated that the water retention capacity was greater in tilled than in no-tilled and saturated hydraulic conductivity values were greater in tilled treatments than in NT soil.</p>


1990 ◽  
Vol 115 (4) ◽  
pp. 564-570 ◽  
Author(s):  
B.H. Ownley ◽  
D.M. Benson ◽  
T. E. Bilderback

One-year-old Rhododendron L. `Nova Zembla' were grown in four container media infested with Phytophthora cinnamomi Rands. The media (all v/v) were pine bark, 3 pine bark:1 sand, 3 pine bark:1 peat, and 1 peat: 1 sand: 1 soil. After 20 weeks, plants were evaluated for root rot symptoms and the total porosity, air space, moisture-holding capacity, and bulk density were determined for all media. All media provided adequate moisture-holding capacity for container production of rhododendron in noninfested media. Shoot fresh weight in noninfested media was positively correlated with bulk density and water (percent by volume) held in the 1.0- to 5.0-kPa matric tension range and negatively correlated with total porosity and air space. Root rot severity was greatest in peat: sand: soil, intermediate in pine bark: peat, and least in pine bark and pine bark: sand. Root rot severity was negatively correlated with total porosity and air space and positively correlated with bulk density and water (percent by volume) held in the 5.0- to 10.0-kPa matric tension range.


1999 ◽  
Vol 17 (1) ◽  
pp. 49-52 ◽  
Author(s):  
Robert H. Stamps ◽  
Michael R. Evans

Abstract A comparison was made of Canadian sphagnum peat (SP) and Philippine coconut (Cocos nucifera L.) coir dust (CD) as growing media components for greenhouse production of Dracaena marginata Bak. and Spathiphyllum Schott ‘Petite’. Three soilless foliage plant growing mixes (Cornell, Hybrid, University of Florida #2 [UF-2]) were prepared using either SP or CD and pine bark (PB), vermiculite (V), and/or perlite (P) in the following ratios (% by vol): Cornell = 50 CD or SP:25 V:25 P, Hybrid = 40 CD or SP:30 V:30 PB, UF-2 = 50 CD or SP: 50 PB. Dracaena root growth was not affected by treatments but there were significant mix × media component interactions that affected plant top growth parameters. In general, the growth and quality of D. marginata were reduced by using CD in Cornell, had no effect in Hybrid, and increased in UF-2. S. ‘Petite’ grew equally well in all growing mixes regardless of whether CD or SP was used; however, plants grew more in Cornell and Hybrid than in UF-2. S. ‘Petite’ roots, which were infested with Cylindrocladium spathiphylli, had higher grades when grown in CD than when the media contained SP.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rianne C. Prins ◽  
Sonja Billerbeck

Abstract Background Fungi are premier hosts for the high-yield secretion of proteins for biomedical and industrial applications. The stability and activity of these secreted proteins is often dependent on the culture pH. As yeast acidifies the commonly used synthetic complete drop-out (SD) media that contains ammonium sulfate, the pH of the media needs to be buffered in order to maintain a desired extracellular pH during biomass production. At the same time, many buffering agents affect growth at the concentrations needed to support a stable pH. Although the standard for biotechnological research and development is shaken batch cultures or microtiter plate cultures that cannot be easily automatically pH-adjusted during growth, there is no comparative study that evaluates the buffering capacity and growth effects of different media types across pH-values in order to develop a pH-stable batch culture system. Results We systematically test the buffering capacity and growth effects of a citrate-phosphate buffer (CPB) from acidic to neutral pH across different media types. These media types differ in their nitrogen source (ammonium sulfate, urea or both). We find that the widely used synthetic drop-out media that uses ammonium sulfate as nitrogen source can only be effectively buffered at buffer concentrations that also affect growth. At lower concentrations, yeast biomass production still acidifies the media. When replacing the ammonium sulfate with urea, the media alkalizes. We then develop a medium combining ammonium sulfate and urea which can be buffered at low CPB concentrations that do not affect growth. In addition, we show that a buffer based on Tris/HCl is not effective in maintaining any of our media types at neutral pH even at relatively high concentrations. Conclusion Here we show that the buffering of yeast batch cultures is not straight-forward and addition of a buffering agent to set a desired starting pH does not guarantee pH-maintenance during growth. In response, we present a buffered media system based on an ammonium sulfate/urea medium that enables relatively stable pH-maintenance across a wide pH-range without affecting growth. This buffering system is useful for protein-secretion-screenings, antifungal activity assays, as well as for other pH-dependent basic biology or biotechnology projects.


Soil Research ◽  
2019 ◽  
Vol 57 (6) ◽  
pp. 629 ◽  
Author(s):  
C. Duwig ◽  
B. Prado ◽  
A.-J. Tinet ◽  
P. Delmas ◽  
N. Dal Ferro ◽  
...  

Volcanic soils are important resources because of their unique mineralogical and physical characteristics, and allophanic Andosols represent some of the world’s most fertile soils. However, their unique properties can be lost when cultivated. Most soils in the Central Valley, Mexico, are derived from volcanic materials. This valley encompasses one of the largest water supply systems in the world by volume, but is affected by soil degradation and deforestation. Sustainably managing volcanic soils requires understanding how land use affects their hydrodynamic properties. Gas adsorption and mercury intrusion porosimetry, water retention curves, tension infiltrometry and X-ray tomography were used to describe pore structure characteristics. Two volcanic soils (one Andosol and one derived from indurated tuff – Tepetates), three land uses (maize monoculture, maize–wheat rotation and fallow) and two horizons (Ap and A2 for maize monoculture and maize–wheat rotation) were studied. Tillage affected topsoil by increasing the sand fraction by 38% and decreasing total porosity and macroporosity by 23% and 40% respectively. Macropore size was reduced and the number of isolated macropores was higher in the tilled layer under maize, compared with untilled subsoil. The plot under maize–wheat rotation had lower allophane content, and saturated hydraulic conductivity was reduced by nearly an order of magnitude and water retention by half, compared with maize and fallow plots. Compared with Andosols, Tepetates showed differences in mineralogical composition with lower contents of amorphous compounds and in its porous network characteristics with twice the total and percolating macroporosity compared with the maize plot. Its high content of organic carbon (3.5%) seemed beneficial for its hydrodynamic properties. Sustainable agricultural management of these volcanic soils requires reducing mechanised tillage, avoiding periods when soil is bare, not applying maize–wheat rotation and applying maize–fallow rotation allowing natural vegetation growth.


2020 ◽  
Vol 191 ◽  
pp. 96-106 ◽  
Author(s):  
Mika Turunen ◽  
Jari Hyväluoma ◽  
Jaakko Heikkinen ◽  
Riikka Keskinen ◽  
Janne Kaseva ◽  
...  

2020 ◽  
Vol 12 (15) ◽  
pp. 5992
Author(s):  
Antonios Chrysargyris ◽  
Panayiota Xylia ◽  
Gorkem Akinci ◽  
Konstantinos Moustakas ◽  
Nikolaos Tzortzakis

Significant quantities of paper waste (PW) have been accumulated in recent years and the reuse/recycling of PW is required due to environmental concerns. In the present study, printed PW was used as a peat (P) substitute in growing medium for the Brassica seedlings production, considering recycling, sustainable agriculture, and partly peat replacement. Seeds of cauliflower, broccoli, and cabbage were seeded in growing media made of 0–10–30–50% PW. The addition of PW improved the growing media pH and mineral content, reduced the media aeration, and affected seed emergence. The PW decreased plant growth and the effects were more pronounced at 50% PW. The PW ≥ 30% decreased stomatal conductance, while chlorophyll fluorescence and content of chlorophylls decreased with high PW ratio, negatively affecting the plant physiology. The PW decreased plant sodium and iron and increased potassium, calcium, magnesium, and copper content. The PW increased antioxidant activity to a certain degree for cauliflower and cabbage and resulted in no change for broccoli, while polyphenols increased in cabbage seedlings. The addition of PW did not cause cellular damage as both lipid peroxidation and hydrogen peroxide production remained at low levels, maintaining low levels on the antioxidant enzymes (catalase, superoxide dismutase, peroxidase) metabolism. The present study shows that low PW content can partially replace peat for Brassica seedling production under a sustainable agriculture and environmentally friendly scheme.


Sign in / Sign up

Export Citation Format

Share Document