Spatial Representations and Sensorimotor Transformations

1988 ◽  
Vol 66 (4) ◽  
pp. 429-429
Author(s):  
John Kalaska ◽  
Allan Smith ◽  
Yves Lamarre

Each year, the Centre de recherche en sciences neurologiques of the Université de Montréal organizes a symposium on a topic in the neurosciences. For the IXth International Symposium, the theme chosen was "Spatial Representations and Sensorimotor Transformations."Many of the diverse functions performed by the central nervous system have an important spatial component in common. For instance, there are neural mechanisms for the analysis and perception of the three-dimensional structure of visual space, such as the location, form, and movement of objects in the visual environment. There exist processes to determine the spatial location of auditory stimuli. One can also regard the body as an "internal" space for which mechanisms have evolved for the kinesthetic perception of the position and movement of body parts relative to one another, and for the position and orientation of the body within its immediate external environment. Motor control also requires spatial information, since many movements of the eyes, head, and limbs follow specific paths or are aimed at the specific spatial location of an object as signalled by sensory processes.One can argue, therefore, that a major aspect of the functioning of the brain involves the generation of many different spatial representations, and the exchange of information among them. Each of these neural representations provides a spatial coordinate framework whose coordinate axes are based on certain types of information. For instance, movement of the limb toward an object can be described equally well in several different coordinate systems, such as those based on its spatial path, its dynamics (the direction and level of forces, torques, and external loads), or the muscle activity by which it is achieved. A better understanding of the coordinates in which the CNS codes these various types of information will provide a better appreciation of the neural mechanisms generating the spatial representations. It will also provide a clearer understanding of the transformations that must occur to relay information between sensory and motor representations, which permit an animal to interact successfully with its environment.The participants at this Symposium were invited to examine some of these issues as they pertain to the somatic and visual systems.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
In-Seon Lee ◽  
Won-mo Jung ◽  
Hi-Joon Park ◽  
Younbyoung Chae

Background. Multivoxel pattern analysis has provided new evidence on somatotopic representation in the human brain. However, the effects of stimulus modality (e.g., penetrating needle versus non-penetrating touch) and level of classification (e.g., multiclass versus binary classification) on patterns of brain activity encoding spatial information of body parts have not yet been studied. We hypothesized that performance of brain-based prediction models may vary across the types of stimuli, and neural patterns of voxels in the SI and parietal cortex would significantly contribute to the prediction of stimulated locations. Objective. We aimed to (1) test whether brain responses to tactile stimuli could distinguish among stimulated locations on the body surface, (2) investigate whether the stimulus modality and number of classes affect classification performance, and (3) localize brain regions encoding the spatial information of somatosensory stimuli. Methods. Fifteen healthy participants completed two functional magnetic resonance imaging (MRI) scans and were stimulated via the insertion of acupuncture needles or by non-invasive touch stimuli (5.46-sized von Frey filament). Participants received the stimuli at four different locations on the upper and lower limbs (two sites each) for 5 min while blood-oxygen-level-dependent activity (BOLD) was measured using 3-Tesla MRI. We performed multivariate pattern analysis (MVPA) using parameter estimate images of each trial for each participant and the support vector classifier (SVC) function, and the prediction accuracy and other MVPA outcomes were evaluated using stratified five-fold cross validation. We estimated the significance of the classification accuracy using a permutation test with randomly labeled training data (n=10,000). Searchlight analysis was conducted to identify brain regions associated with significantly higher accuracy compared to predictions based on chance as obtained from a random classifier. Results. For the four-class classification (classifying four stimulated points on the body), SVC analysis of whole-brain beta values in response to acupuncture stimulation was able to discriminate among stimulated locations (mean accuracy, 0.31; q<0.01). The searchlight analysis found that values related to the right primary somatosensory cortex (SI) and intraparietal sulcus were significantly more accurate than those due to chance (p<0.01). On the other hand, the same classifier did not predict stimulated locations accurately for touch stimulation (mean accuracy, 0.25; q=0.66). For binary classification (discriminating between two stimulated body parts, i.e., the arm or leg), the SVC algorithm successfully predicted the stimulated body parts for both acupuncture (mean accuracy, 0.63; q<0.001) and touch stimulation (mean accuracy, 0.60; q<0.01). Searchlight analysis revealed that predictions based on the right SI, primary motor cortex (MI), paracentral gyrus, and superior frontal gyrus were significantly more accurate compared to predictions based on chance (p<0.05). Conclusion. Our findings suggest that the SI, as well as the MI, intraparietal sulcus, paracentral gyrus, and superior frontal gyrus, is responsible for the somatotopic representation of body parts stimulated by tactile stimuli. The MVPA approach for identifying neural patterns encoding spatial information of somatosensory stimuli may be affected by the stimulus type (penetrating needle versus non-invasive touch) and the number of classes (classification of four small points on the body versus two large body parts). Future studies with larger samples will identify stimulus-specific neural patterns representing stimulated locations, independent of subjective tactile perception and emotional responses. Identification of distinct neural patterns of body surfaces will help in improving neural biomarkers for pain and other sensory percepts in the future.


2017 ◽  
Vol 2 (3) ◽  

Melanoma is the most dangerous type of skin cancer in which mostly damaged unpaired DNA starts mutating abnormally and staged an unprecedented proliferation of epithelial skin to form a malignant tumor. In epidemics of skin, pigment-forming melanocytes of basal cells start depleting and form uneven black or brown moles. Melanoma can further spread all over the body parts and could become hard to detect. In USA Melanoma kills an estimated 10,130 people annually. This challenge can be succumbed by using the certain anti-cancer drug. In this study design, cyclophosphamide were used as a model drug. But it has own limitation like mild to moderate use may cause severe cytopenia, hemorrhagic cystitis, neutropenia, alopecia and GI disturbance. This is a promising challenge, which is caused due to the increasing in plasma drug concentration above therapeutic level and due to no rate limiting steps involved in formulation design. In this study, we tried to modify drug release up to threefold and extended the release of drug by preparing and designing niosome based topical gel. In the presence of Dichloromethane, Span60 and cholesterol, the initial niosomes were prepared using vacuum evaporator. The optimum percentage drug entrapment efficacy, zeta potential, particle size was found to be 72.16%, 6.19mV, 1.67µm.Prepared niosomes were further characterized using TEM analyzer. The optimum batch of niosomes was selected and incorporated into topical gel preparation. Cold inversion method and Poloxamer -188 and HPMC as core polymers, were used to prepare cyclophosphamide niosome based topical gel. The formula was designed using Design expert 7.0.0 software and Box-Behnken Design model was selected. Almost all the evaluation parameters were studied and reported. The MTT shows good % cell growth inhibition by prepared niosome based gel against of A375 cell line. The drug release was extended up to 20th hours. Further as per ICH Q1A (R2), guideline 6 month stability studies were performed. The results were satisfactory and indicating a good formulation approach design was achieved for Melanoma treatment.


Somatechnics ◽  
2015 ◽  
Vol 5 (1) ◽  
pp. 88-103 ◽  
Author(s):  
Kalindi Vora

This paper provides an analysis of how cultural notions of the body and kinship conveyed through Western medical technologies and practices in Assisted Reproductive Technologies (ART) bring together India's colonial history and its economic development through outsourcing, globalisation and instrumentalised notions of the reproductive body in transnational commercial surrogacy. Essential to this industry is the concept of the disembodied uterus that has arisen in scientific and medical practice, which allows for the logic of the ‘gestational carrier’ as a functional role in ART practices, and therefore in transnational medical fertility travel to India. Highlighting the instrumentalisation of the uterus as an alienable component of a body and subject – and therefore of women's bodies in surrogacy – helps elucidate some of the material and political stakes that accompany the growth of the fertility travel industry in India, where histories of privilege and difference converge. I conclude that the metaphors we use to structure our understanding of bodies and body parts impact how we imagine appropriate roles for people and their bodies in ways that are still deeply entangled with imperial histories of science, and these histories shape the contemporary disparities found in access to medical and legal protections among participants in transnational surrogacy arrangements.


2020 ◽  
Vol 2020 (17) ◽  
pp. 2-1-2-6
Author(s):  
Shih-Wei Sun ◽  
Ting-Chen Mou ◽  
Pao-Chi Chang

To improve the workout efficiency and to provide the body movement suggestions to users in a “smart gym” environment, we propose to use a depth camera for capturing a user’s body parts and mount multiple inertial sensors on the body parts of a user to generate deadlift behavior models generated by a recurrent neural network structure. The contribution of this paper is trifold: 1) The multimodal sensing signals obtained from multiple devices are fused for generating the deadlift behavior classifiers, 2) the recurrent neural network structure can analyze the information from the synchronized skeletal and inertial sensing data, and 3) a Vaplab dataset is generated for evaluating the deadlift behaviors recognizing capability in the proposed method.


Author(s):  
Anne Phillips

No one wants to be treated like an object, regarded as an item of property, or put up for sale. Yet many people frame personal autonomy in terms of self-ownership, representing themselves as property owners with the right to do as they wish with their bodies. Others do not use the language of property, but are similarly insistent on the rights of free individuals to decide for themselves whether to engage in commercial transactions for sex, reproduction, or organ sales. Drawing on analyses of rape, surrogacy, and markets in human organs, this book challenges notions of freedom based on ownership of our bodies and argues against the normalization of markets in bodily services and parts. The book explores the risks associated with metaphors of property and the reasons why the commodification of the body remains problematic. The book asks what is wrong with thinking of oneself as the owner of one's body? What is wrong with making our bodies available for rent or sale? What, if anything, is the difference between markets in sex, reproduction, or human body parts, and the other markets we commonly applaud? The book contends that body markets occupy the outer edges of a continuum that is, in some way, a feature of all labor markets. But it also emphasizes that we all have bodies, and considers the implications of this otherwise banal fact for equality. Bodies remind us of shared vulnerability, alerting us to the common experience of living as embodied beings in the same world. Examining the complex issue of body exceptionalism, the book demonstrates that treating the body as property makes human equality harder to comprehend.


Author(s):  
Rajendra Pai N. ◽  
U. Govindaraju

Ayurveda in its principle has given importance to individualistic approach rather than generalize. Application of this examination can be clearly seem like even though two patients suffering from same disease, the treatment modality may change depending upon the results of Dashvidha Pariksha. Prakruti and Pramana both used in Dashvidha Pariksha. Both determine the health of the individual and Bala (strength) of Rogi (Patient). Ayurveda followed Swa-angula Pramana as the unit of measurement for measuring the different parts of the body which is prime step assessing patient before treatment. Sushruta and Charaka had stated different Angula Pramana of each Pratyanga (body parts). Specificity is the characteristic property of Swa-angula Pramana. This can be applicable in present era for example artificial limbs. A scientific research includes collection, compilation, analysis and lastly scrutiny of entire findings to arrive at a conclusion. Study of Pramana and its relation with Prakruti was conducted in 1000 volunteers using Prakruti Parkishan proforma with an objective of evaluation of Anguli Pramana in various Prakriti. It was observed co-relating Pramana in each Prakruti and Granthokta Pramana that there is no vast difference in measurement of head, upper limb and lower limb. The observational study shows closer relation of features with classical texts.


Author(s):  
Brandon Shaw

Romeo’s well-known excuse that he cannot dance because he has soles of lead is demonstrative of the autonomous volitional quality Shakespeare ascribes to body parts, his utilization of humoral somatic psychology, and the horizontally divided body according to early modern dance practice and theory. This chapter considers the autonomy of and disagreement between the body parts and the unruliness of the humors within Shakespeare’s dramas, particularly Romeo and Juliet. An understanding of the body as a house of conflicting parts can be applied to the feet of the dancing body in early modern times, as is evinced not only by literary texts, but dance manuals as well. The visuality dominating the dance floor provided opportunity for social advancement as well as ridicule, as contemporary sources document. Dance practice is compared with early modern swordplay in their shared approaches to the training and social significance of bodily proportion and rhythm.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3771
Author(s):  
Alexey Kashevnik ◽  
Walaa Othman ◽  
Igor Ryabchikov ◽  
Nikolay Shilov

Meditation practice is mental health training. It helps people to reduce stress and suppress negative thoughts. In this paper, we propose a camera-based meditation evaluation system, that helps meditators to improve their performance. We rely on two main criteria to measure the focus: the breathing characteristics (respiratory rate, breathing rhythmicity and stability), and the body movement. We introduce a contactless sensor to measure the respiratory rate based on a smartphone camera by detecting the chest keypoint at each frame, using an optical flow based algorithm to calculate the displacement between frames, filtering and de-noising the chest movement signal, and calculating the number of real peaks in this signal. We also present an approach to detecting the movement of different body parts (head, thorax, shoulders, elbows, wrists, stomach and knees). We have collected a non-annotated dataset for meditation practice videos consists of ninety videos and the annotated dataset consists of eight videos. The non-annotated dataset was categorized into beginner and professional meditators and was used for the development of the algorithm and for tuning the parameters. The annotated dataset was used for evaluation and showed that human activity during meditation practice could be correctly estimated by the presented approach and that the mean absolute error for the respiratory rate is around 1.75 BPM, which can be considered tolerable for the meditation application.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 696
Author(s):  
Eun Ji Choi ◽  
Jin Woo Moon ◽  
Ji-hoon Han ◽  
Yongseok Yoo

The type of occupant activities is a significantly important factor to determine indoor thermal comfort; thus, an accurate method to estimate occupant activity needs to be developed. The purpose of this study was to develop a deep neural network (DNN) model for estimating the joint location of diverse human activities, which will be used to provide a comfortable thermal environment. The DNN model was trained with images to estimate 14 joints of a person performing 10 common indoor activities. The DNN contained numerous shortcut connections for efficient training and had two stages of sequential and parallel layers for accurate joint localization. Estimation accuracy was quantified using the mean squared error (MSE) for the estimated joints and the percentage of correct parts (PCP) for the body parts. The results show that the joint MSEs for the head and neck were lowest, and the PCP was highest for the torso. The PCP for individual activities ranged from 0.71 to 0.92, while typing and standing in a relaxed manner were the activities with the highest PCP. Estimation accuracy was higher for relatively still activities and lower for activities involving wide-ranging arm or leg motion. This study thus highlights the potential for the accurate estimation of occupant indoor activities by proposing a novel DNN model. This approach holds significant promise for finding the actual type of occupant activities and for use in target indoor applications related to thermal comfort in buildings.


2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


Sign in / Sign up

Export Citation Format

Share Document