Central Peptidergic Mechanisms in Autonomic Control

1992 ◽  
Vol 70 (5) ◽  
pp. 772-772
Author(s):  
Alastair V. Ferguson

Since the recognition in the 1970s that peptides may play more diverse physiological roles than suggested by their original recognition as circulating hormones, there has been an explosion of information regarding the potential central nervous system actions of these substances. Pharmacological binding studies have described an extensive distribution of many different groups of peptidergic receptors suggesting potential sites of action for specific peptides within the brain. Many of these receptor localizations were found within the blood brain barrier indicating that these substances were released locally and perhaps acted as neurotransmitters. Over the years, experiments demonstrating physiological effects of locally administered peptides in regions where receptors for that molecule are localized have added credibility to such a hypothesis. The explosion of interest in the peptides as potential chemical messengers within the brain has since led to the description of multiple peptidergic neuronal systems within the brain. In addition, there are now many different reports of postsynaptic effects of exogenous administration of peptides on single neurons. Similarly, many studies have reported more broad-based physiological effects resulting from actions of peptides within the central nervous system.The manuscripts that follow summarize presentations in a symposium to examine the "Central Peptidergic Mechanisms in Autonomic Control," which was part of the program at the Canadian Federation of Biological Sciences annual meeting held at Queen's University in Kingston in July of 1991. The express purpose of this symposium in its inception was to provide a forum for consideration of the CNS actions of peptides in the context of a systems physiology approach. We hoped to consider our current knowledge of the roles of peptides in the brain as they relate to the control of specific physiological systems. Therefore rather than presenting a consideration of individual peptides, and each one's multitude of potential roles, the manuscripts presented in the following section have addressed what is known of central peptidergic involvement in the physiological control of reproductive function (W. K. Samson), cardiovascular regulation (A. V. Ferguson), thermoregulatory control (Q. J. Pittman), and drinking (M. Evered).I should like to take this opportunity to thank all who contributed to this symposium, in particular the speakers without whose cooperation it would not have been possible. I am also indebted to the sponsors of the symposium: Merck Frosst, Warner Lambert, Sandoz, the Canadian Physiological Society, and the Faculty of Medicine at Queen's University, whose generous support permitted such a highly qualified group of invited speakers to attend.

2020 ◽  
Vol 25 (42) ◽  
pp. 4510-4522 ◽  
Author(s):  
Biancamaria Longoni ◽  
Irene Fasciani ◽  
Shivakumar Kolachalam ◽  
Ilaria Pietrantoni ◽  
Francesco Marampon ◽  
...  

: Exosomes are extracellular vesicles produced by eukaryotic cells that are also found in most biological fluids and tissues. While they were initially thought to act as compartments for removal of cellular debris, they are now recognized as important tools for cell-to-cell communication and for the transfer of pathogens between the cells. They have attracted particular interest in neurodegenerative diseases for their potential role in transferring prion-like proteins between neurons, and in Parkinson’s disease (PD), they have been shown to spread oligomers of α-synuclein in the brain accelerating the progression of this pathology. A potential neuroprotective role of exosomes has also been equally proposed in PD as they could limit the toxicity of α-synuclein by clearing them out of the cells. Exosomes have also attracted considerable attention for use as drug vehicles. Being nonimmunogenic in nature, they provide an unprecedented opportunity to enhance the delivery of incorporated drugs to target cells. In this review, we discuss current knowledge about the potential neurotoxic and neuroprotective role of exosomes and their potential application as drug delivery systems in PD.


Author(s):  
Nidhi Tiwari ◽  
Jyoti Upadhyay ◽  
Mohd Nazam Ansari ◽  
Syed Shadab Raza ◽  
Wasim Ahmad ◽  
...  

: Vascular dementia (VaD) occurs due to cerebrovascular insufficiency, which leads to decreased blood circulation to the brain, thereby resulting in mental disabilities. The main causes of vascular cognitive impairment (VCI) are severe hypoperfusion, stroke, hypertension, large vessel disease (cortical), small vessel disease (subcortical VaD), strategic infarct, hemorrhage (microbleed), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and cerebral amyloid angiopathy (CAA),which leads to decreased cerebrovascular perfusion. Many metabolic disorders such as diabetes mellitus (DM), dyslipidemia, and hyperhomocysteinemia are also related to VaD. The rodent experimental models provide a better prospective for the investigation of the molecular mechanism of new drugs. A plethora of experimental models are available that mimic the pathological conditions and lead to VaD. This review article updates the current knowledge on the basis of VaD, risk factors, pathophysiology, mechanism, advantages, limitations, and the modification of various available rodent experimental models.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 682
Author(s):  
Matthias Christen ◽  
Nils Janzen ◽  
Anne Fraser ◽  
Adrian C. Sewell ◽  
Vidhya Jagannathan ◽  
...  

A 7-month-old, spayed female, domestic longhair cat with L-2-hydroxyglutaric aciduria (L-2-HGA) was investigated. The aim of this study was to investigate the clinical signs, metabolic changes and underlying genetic defect. The owner of the cat reported a 4-month history of multiple paroxysmal seizure-like episodes, characterized by running around the house, often in circles, with abnormal behavior, bumping into obstacles, salivating and often urinating. The episodes were followed by a period of disorientation and inappetence. Neurological examination revealed an absent bilateral menace response. Routine blood work revealed mild microcytic anemia but biochemistry, ammonia, lactate and pre- and post-prandial bile acids were unremarkable. MRI of the brain identified multifocal, bilaterally symmetrical and T2-weighted hyperintensities within the prosencephalon, mesencephalon and metencephalon, primarily affecting the grey matter. Urinary organic acids identified highly increased levels of L-2-hydroxyglutaric acid. The cat was treated with the anticonvulsants levetiracetam and phenobarbitone and has been seizure-free for 16 months. We sequenced the genome of the affected cat and compared the data to 48 control genomes. L2HGDH, coding for L-2-hydroxyglutarate dehydrogenase, was investigated as the top functional candidate gene. This search revealed a single private protein-changing variant in the affected cat. The identified homozygous variant, XM_023255678.1:c.1301A>G, is predicted to result in an amino acid change in the L2HGDH protein, XP_023111446.1:p.His434Arg. The available clinical and biochemical data together with current knowledge about L2HGDH variants and their functional impact in humans and dogs allow us to classify the p.His434Arg variant as a causative variant for the observed neurological signs in this cat.


2021 ◽  
Vol 48 (3) ◽  
pp. 2775-2789
Author(s):  
Ludwig Stenz

AbstractThe 300 bp dimeric repeats digestible by AluI were discovered in 1979. Since then, Alu were involved in the most fundamental epigenetic mechanisms, namely reprogramming, pluripotency, imprinting and mosaicism. These Alu encode a family of retrotransposons transcribed by the RNA Pol III machinery, notably when the cytosines that constitute their sequences are de-methylated. Then, Alu hijack the functions of ORF2 encoded by another transposons named L1 during reverse transcription and integration into new sites. That mechanism functions as a complex genetic parasite able to copy-paste Alu sequences. Doing that, Alu have modified even the size of the human genome, as well as of other primate genomes, during 65 million years of co-evolution. Actually, one germline retro-transposition still occurs each 20 births. Thus, Alu continue to modify our human genome nowadays and were implicated in de novo mutation causing diseases including deletions, duplications and rearrangements. Most recently, retrotransposons were found to trigger neuronal diversity by inducing mosaicism in the brain. Finally, boosted during viral infections, Alu clearly interact with the innate immune system. The purpose of that review is to give a condensed overview of all these major findings that concern the fascinating physiology of Alu from their discovery up to the current knowledge.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 717
Author(s):  
Ilenia Savinetti ◽  
Angela Papagna ◽  
Maria Foti

Monocytes play a crucial role in immunity and tissue homeostasis. They constitute the first line of defense during the inflammatory process, playing a role in the pathogenesis and progression of diseases, making them an attractive therapeutic target. They are heterogeneous in morphology and surface marker expression, which suggest different molecular and physiological properties. Recent evidences have demonstrated their ability to enter the brain, and, as a consequence, their hypothetical role in different neurodegenerative diseases. In this review, we will discuss the current knowledge about the correlation between monocyte dysregulation in the brain and/or in the periphery and neurological diseases in humans. Here we will focus on the most common neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and multiple sclerosis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pijush Chakraborty ◽  
Gwladys Rivière ◽  
Shu Liu ◽  
Alain Ibáñez de Opakua ◽  
Rıza Dervişoğlu ◽  
...  

AbstractPathological aggregation of the protein tau into insoluble aggregates is a hallmark of neurodegenerative diseases. The emergence of disease-specific tau aggregate structures termed tau strains, however, remains elusive. Here we show that full-length tau protein can be aggregated in the absence of co-factors into seeding-competent amyloid fibrils that sequester RNA. Using a combination of solid-state NMR spectroscopy and biochemical experiments we demonstrate that the co-factor-free amyloid fibrils of tau have a rigid core that is similar in size and location to the rigid core of tau fibrils purified from the brain of patients with corticobasal degeneration. In addition, we demonstrate that the N-terminal 30 residues of tau are immobilized during fibril formation, in agreement with the presence of an N-terminal epitope that is specifically detected by antibodies in pathological tau. Experiments in vitro and in biosensor cells further established that co-factor-free tau fibrils efficiently seed tau aggregation, while binding studies with different RNAs show that the co-factor-free tau fibrils strongly sequester RNA. Taken together the study provides a critical advance to reveal the molecular factors that guide aggregation towards disease-specific tau strains.


Reproduction ◽  
2018 ◽  
Author(s):  
Susana B Rulli ◽  
María Julia Cambiasso ◽  
Laura D Ratner

In mammals, the reproductive function is controlled by the hypothalamic-pituitary-gonadal axis. During development, mechanisms mediated by gonadal steroids exert an imprinting at the hypothalamic-pituitary level, by establishing sexual differences in the circuits that control male and female reproduction. In rodents, the testicular production of androgens increases drastically during the fetal/neonatal stage. This process is essential for the masculinization of the reproductive tract, genitals and brain. The conversion of androgens to estrogens in the brain is crucial for the male sexual differentiation and behavior. Conversely, feminization of the brain occurs in the absence of high levels of gonadal steroids during the perinatal period in females. Potential genetic contribution to the differentiation of brain cells through direct effects of genes located on sex chromosomes is also relevant. In this review, we will focus on the phenotypic alterations that occur on the hypothalamic-pituitary-gonadal axis of transgenic mice with persistently elevated expression of the human chorionic gonadotropin hormone (hCG). Excess of endogenously synthesized gonadal steroids due to a constant hCG stimulation is able to disrupt the developmental programming of the hypothalamic-pituitary axis in both transgenic males and females. Locally produced estrogens by the hypothalamic aromatase might play a key role in the phenotype of these mice. The “four core genotypes” mouse model demonstrated a potential influence of sex chromosome genes in brain masculinization before critical periods of sex differentiation. Thus, hormonal and genetic factors interact to regulate the local production of the neurosteroids necessary for the programming of the male and female reproductive function.


PEDIATRICS ◽  
1958 ◽  
Vol 21 (5) ◽  
pp. 871-872
Author(s):  
ERIC DENHOFF

This monograph summarizes the results of the Conference on Neurological Disability as a National Problem held at Arden House, Harriman, New York, in December, 1955. It was attended by more than 50 highly qualified specialists with various interests in the field who met to explore the realistic possibilities of meeting the problems posed by more than 10 million patients suffering from more than 300 clinical entities loosely grouped together as "neurologic disabilities." Neurologic disabilities are defined as those disorders which are associated demonstrably with dysfunction, disease, or injury of the nervous system, the brain, the spinal cord, and the peripheral neuromuscular connections.


Endocrinology ◽  
2011 ◽  
Vol 152 (9) ◽  
pp. 3461-3470 ◽  
Author(s):  
Nicolette L. McGuire ◽  
Kristina Kangas ◽  
George E. Bentley

Study of seasonal reproduction has focused on the brain. Here, we show that the inhibition of sex steroid secretion can be seasonally mediated at the level of the gonad. We investigate the direct effects of melatonin on sex steroid secretion and gonadal neuropeptide expression in European starlings (Sturnus vulgaris). PCR reveals starling gonads express mRNA for gonadotropin inhibitory hormone (GnIH) and its receptor (GnIHR) and melatonin receptors 1B (Mel 1B) and 1C (Mel 1C). We demonstrate that the gonadal GnIH system is regulated seasonally, possibly via a mechanism involving melatonin. GnIH/ GnIHR expression in the testes is relatively low during breeding compared with outside the breeding season. The expression patterns of Mel 1B and Mel 1C are correlated with this expression, and melatonin up-regulates the expression of GnIH mRNA in starling gonads before breeding. In vitro, GnIH and melatonin significantly decrease testosterone secretion from LH/FSH-stimulated testes before, but not during, breeding. Thus local inhibition of sex steroid secretion appears to be regulated seasonally at the level of the gonad, by a mechanism involving melatonin and the gonadal GnIH system.


2014 ◽  
Vol 2014 ◽  
pp. 1-3 ◽  
Author(s):  
Nalan Karabayır ◽  
Gonca Keskindemirci ◽  
Erdal Adal ◽  
Orhan Korkmaz

Rhizomelic chondrodysplasia punctate (RCDP) is a rare autosomal recessive peroxisomal disease. The main features of the disease are shortening of the proximal long bones, punctate calcifications located in the epiphyses of long bones and in soft tissues around joints and vertebral column, vertebral clefting, dysmorphic face, and severe growth retardation, whereas cervical spinal stenosis may also rarely be present. Imaging of the brain and spinal cord in patients with this disorder may aid prognosis and guide management decisions. We report the newborn diagnosed as CDP with cervical stenosis. Our aim is to discuss current knowledge on etiopathogenesis as well as radiological and clinical symptoms of diseases associated with CDP.


Sign in / Sign up

Export Citation Format

Share Document