Tissue glutathione, nutrition, and oxidative stress

1993 ◽  
Vol 71 (9) ◽  
pp. 746-751 ◽  
Author(s):  
Tammy M. Bray ◽  
Carla G. Taylor

Glutathione, a cysteine-containing tripeptide, is the most abundant nonprotein thiol in mammalian cells. Glutathione plays an important role in the detoxification of xenobiotic compounds and in the antioxidation of reactive oxygen species and free radicals. Because of its multiple functions in various tissues and its involvement in many diseases and malnutrition, a clear understanding of the interrelationships among tissue glutathione, nutrition, and oxidative stress is clinically relevant. The focus of this review is to discuss the regulation of tissue glutathione concentration by diet and nutritional status, and to apply this information to those diseases and malnutrition in which decreased tissue glutathione and increased oxidative stress are implicated. A potential strategy to rapidly restore glutathione for both antioxidant and immune defense systems before therapeutic treatment in malnourished patients is discussed.Key words: glutathione, dietary regulation, oxidative stress, malnutrition.

Genome ◽  
2011 ◽  
Vol 54 (10) ◽  
pp. 829-835 ◽  
Author(s):  
Mysore S. Ranjini ◽  
Ravikumar Hosamani ◽  
Muralidhara ◽  
Nallur B. Ramachandra

The evolution of karyotypically stabilized short-lived (SL) and long-lived (LL) cytoraces in the laboratory have been established and validated through our previous lifespan studies. In the present investigation, we examined the possible reason(s) for the differential longevity among selected members of SL and LL cytoraces, employing the well known paraquat (PQ) resistance bioassay. Exposure of these races to varying concentrations of PQ revealed relatively higher resistance among LL cytoraces than SL cytoraces, as evident by the lower incidence of mortality. Biochemical analysis for endogenous markers of oxidative stress revealed that LL-2 cytorace exhibited lower reactive oxygen species (ROS) and lipid peroxidation (LPO) levels, higher activity levels of superoxide dismutase (SOD), and coupled with higher levels of reduced glutathione (GSH) compared with the levels found in SL-2 cytorace. These findings suggest that the higher susceptibility of SL cytoraces to PQ challenge may be, at least in part, related to the higher endogenous levels of oxidative stress markers. Although the precise mechanisms responsible for the longer longevity among LL cytoraces of the nasuta–albomicans complex of Drosophila merits further investigation, our data suggest that the relatively longer lifespan may be related to the status of endogenous markers that renders them more resistant towards oxidative-stress-mediated lethality, as evident in the PQ assay.


Author(s):  
Carmela Balistreri ◽  
Calogera Pisano ◽  
Giovanni Ruvolo

Ascending aorta aneurysm (AsAA) is a complex disease, currently defined an inflammatory disease. In the sporadic form, AsAA has, indeed, a complex physiopathology with a strong inflammatory basis, significantly modulated by genetic variants in innate/inflammatory genes, acting as independent risk factors and as largely evidenced in our recent studies performed during the last 10 years. Based on these premises, here, we want to revise the impact of reactive oxygen species (ROS) and oxidative stress on AsAA pathophysiology and consequently on the onset and progression of sporadic AsAA. This might consent to add other important pieces in the intricate puzzle of the pathophysiology of this disease with the translational aim to identify biomarkers and targets to apply in the complex management of AsAA, by facilitating the AsAA diagnosis currently based only on imaging evaluations, and the treatment exclusively founded on surgery approaches.


2021 ◽  
Author(s):  
Akio Nakamura ◽  
Ritsuko Kawahrada

Protein glycation is the random, nonenzymatic reaction of sugar and protein induced by diabetes and ageing; this process is quite different from glycosylation mediated by the enzymatic reactions catalysed by glycosyltransferases. Schiff bases form advanced glycation end products (AGEs) via intermediates, such as Amadori compounds. Although these AGEs form various molecular species, only a few of their structures have been determined. AGEs bind to different AGE receptors on the cell membrane and transmit signals to the cell. Signal transduction via the receptor of AGEs produces reactive oxygen species in cells, and oxidative stress is responsible for the onset of diabetic complications. This chapter introduces the molecular mechanisms of disease onset due to oxidative stress, including reactive oxygen species, caused by AGEs generated by protein glycation in a hyperglycaemic environment.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Malsawmhriatzuala Jeremy ◽  
Guruswami Gurusubramanian ◽  
Vikas Kumar Roy

Abstract The age-associated imbalances between proliferation and apoptosis lead to impaired spermatogenesis and infertility. The age-associated decline in vitamin D3 levels has been reported and suggested the anti-aging potential of vitamin D3. However, the age-associated decline levels of vitamin D3 has not been studied in relation to the testicular activity. Thus, we investigated the effect of vitamin D3 on the expression of testicular proliferation markers, apoptotic markers, antioxidants system and oxidative stress in a D-gal-induced aged rat model. The present study investigated the levels of vitamin D3 and AGE in serum and testes along with the expression of the AGE-receptor (AGER) in the testis. Vitamin D3 treatment significantly increases cell proliferation and decreases apoptosis in a D-gal-induced aged rat testis. Furthermore, vitamin D3 significantly decreases oxidative stress in aged rat testis by improving the antioxidant defense systems. The expression of AGER was down-regulated by vitamin D3 treatment in aged testis. The circulating and intra-testicular AGE was higher in aged groups, however, only circulating vitamin D3 levels decreased in aged groups. The immunolocalization of VDR showed increased immunostaining in the testis by vitamin D3 treatment. Thus, it can be concluded that vitamin D3 delays testicular senescence by regulating proliferation and apoptosis.


2019 ◽  
Vol 20 (21) ◽  
pp. 5423 ◽  
Author(s):  
Mirza Muhammad Fahd Qadir ◽  
Dagmar Klein ◽  
Silvia Álvarez-Cubela ◽  
Juan Domínguez-Bendala ◽  
Ricardo Luis Pastori

Cellular stress, combined with dysfunctional, inadequate mitochondrial phosphorylation, produces an excessive amount of reactive oxygen species (ROS) and an increased level of ROS in cells, which leads to oxidation and subsequent cellular damage. Because of its cell damaging action, an association between anomalous ROS production and disease such as Type 1 (T1D) and Type 2 (T2D) diabetes, as well as their complications, has been well established. However, there is a lack of understanding about genome-driven responses to ROS-mediated cellular stress. Over the last decade, multiple studies have suggested a link between oxidative stress and microRNAs (miRNAs). The miRNAs are small non-coding RNAs that mostly suppress expression of the target gene by interaction with its 3’untranslated region (3′UTR). In this paper, we review the recent progress in the field, focusing on the association between miRNAs and oxidative stress during the progression of diabetes.


2020 ◽  
Vol 7 (3) ◽  
pp. 782-792 ◽  
Author(s):  
Hongye Yao ◽  
Yang Huang ◽  
Xuan Li ◽  
Xuehua Li ◽  
Hongbin Xie ◽  
...  

Graphene can be modified by different functional groups through various transformation processes in the environment.


2020 ◽  
Vol 2020 ◽  
pp. 1-29 ◽  
Author(s):  
Rossella D’Oria ◽  
Rossella Schipani ◽  
Anna Leonardini ◽  
Annalisa Natalicchio ◽  
Sebastio Perrini ◽  
...  

Reactive oxygen species (ROS) are highly reactive chemical species containing oxygen, controlled by both enzymatic and nonenzymatic antioxidant defense systems. In the heart, ROS play an important role in cell homeostasis, by modulating cell proliferation, differentiation, and excitation-contraction coupling. Oxidative stress occurs when ROS production exceeds the buffering capacity of the antioxidant defense systems, leading to cellular and molecular abnormalities, ultimately resulting in cardiac dysfunction. In this review, we will discuss the physiological sources of ROS in the heart, the mechanisms of oxidative stress-related myocardial injury, and the implications of experimental studies and clinical trials with antioxidant therapies in cardiovascular diseases.


2020 ◽  
Vol 45 (10) ◽  
pp. 2442-2455
Author(s):  
Johann Steinmeier ◽  
Sophie Kube ◽  
Gabriele Karger ◽  
Eric Ehrke ◽  
Ralf Dringen

Abstract β-lapachone (β-lap) is reduced in tumor cells by the enzyme NAD(P)H: quinone acceptor oxidoreductase 1 (NQO1) to a labile hydroquinone which spontaneously reoxidises to β-lap, thereby generating reactive oxygen species (ROS) and oxidative stress. To test for the consequences of an acute exposure of brain cells to β-lap, cultured primary rat astrocytes were incubated with β-lap for up to 4 h. The presence of β-lap in concentrations of up to 10 µM had no detectable adverse consequences, while higher concentrations of β-lap compromised the cell viability and the metabolism of astrocytes in a concentration- and time-dependent manner with half-maximal effects observed for around 15 µM β-lap after a 4 h incubation. Exposure of astrocytes to β-lap caused already within 5 min a severe increase in the cellular production of ROS as well as a rapid oxidation of glutathione (GSH) to glutathione disulfide (GSSG). The transient cellular accumulation of GSSG was followed by GSSG export. The β-lap-induced ROS production and GSSG accumulation were completely prevented in the presence of the NQO1 inhibitor dicoumarol. In addition, application of dicoumarol to β-lap-exposed astrocytes caused rapid regeneration of the normal high cellular GSH to GSSG ratio. These results demonstrate that application of β-lap to cultured astrocytes causes acute oxidative stress that depends on the activity of NQO1. The sequential application of β-lap and dicoumarol to rapidly induce and terminate oxidative stress, respectively, is a suitable experimental paradigm to study consequences of a defined period of acute oxidative stress in NQO1-expressing cells.


Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 567 ◽  
Author(s):  
Fernando J. Peña ◽  
Cristian O’Flaherty ◽  
José M. Ortiz Rodríguez ◽  
Francisco E. Martín Cano ◽  
Gemma L. Gaitskell-Phillips ◽  
...  

Redox regulation and oxidative stress have become areas of major interest in spermatology. Alteration of redox homeostasis is recognized as a significant cause of male factor infertility and is behind the damage that spermatozoa experience after freezing and thawing or conservation in a liquid state. While for a long time, oxidative stress was just considered an overproduction of reactive oxygen species, nowadays it is considered as a consequence of redox deregulation. Many essential aspects of spermatozoa functionality are redox regulated, with reversible oxidation of thiols in cysteine residues of key proteins acting as an “on–off” switch controlling sperm function. However, if deregulation occurs, these residues may experience irreversible oxidation and oxidative stress, leading to malfunction and ultimately death of the spermatozoa. Stallion spermatozoa are “professional producers” of reactive oxygen species due to their intense mitochondrial activity, and thus sophisticated systems to control redox homeostasis are also characteristic of the spermatozoa in the horse. As a result, and combined with the fact that embryos can easily be collected in this species, horses are a good model for the study of redox biology in the spermatozoa and its impact on the embryo.


Sign in / Sign up

Export Citation Format

Share Document