scholarly journals Particle pairs and trains in inertial microfluidics

2020 ◽  
Vol 43 (8) ◽  
Author(s):  
Christian Schaaf ◽  
Holger Stark

Abstract. Staggered and linear multi-particle trains constitute characteristic structures in inertial microfluidics. Using lattice-Boltzmann simulations, we investigate their properties and stability, when flowing through microfluidic channels. We confirm the stability of cross-streamline pairs by showing how they contract or expand to their equilibrium axial distance. In contrast, same-streamline pairs quickly expand to a characteristic separation but even at long times slowly drift apart. We reproduce the distribution of particle distances with its characteristic peak as measured in experiments. Staggered multi-particle trains initialized with an axial particle spacing larger than the equilibrium distance contract non-uniformly due to collective drag reduction. Linear particle trains, similar to pairs, rapidly expand toward a value about twice the equilibrium distance of staggered trains and then very slowly drift apart non-uniformly. Again, we reproduce the statistics of particle distances and the characteristic peak observed in experiments. Finally, we thoroughly analyze the damped displacement pulse traveling as a microfluidic phonon through a staggered train and show how a defect strongly damps its propagation. Graphical abstract

2021 ◽  
Vol 13 (3) ◽  
pp. 1326
Author(s):  
Hongfang Li ◽  
Huixiao Wang ◽  
Yaxue Yang ◽  
Ruxin Zhao

The interactions of water, energy, and food, which are essential resources for human survival, livelihoods, production, and development, constitute a water–energy–food (WEF) nexus. Applying symbiosis theory, the economic, social, and natural factors were considered at the same time in the WEF system, and we conducted a micro-level investigation focusing on the stability, coordination, and sustainability of the symbiotic units (water, energy, and food), and external environment of the WEF system in 36 prefecture-level cities across three northeastern provinces of China. Finally, we analyzed the synergistic safety and coupling coordination degree of the WEF system by the combination of stability, coordination, and sustainability, attending to the coordination relationship and influences of the external environment. The results indicated that the synergistic safety of the WEF system in three northeastern provinces need to equally pay attention to the stability, coordination, and sustainability of the WEF system, since their weights were 0.32, 0.36 and 0.32, respectively. During 2010–2016, the synergistic safety indexes of the WEF system ranged between 0.40 and 0.60, which was a state of boundary safety. In the current study, the coupling coordination degree of the WEF system fluctuated around a value of 0.6, maintaining a primary coordination level; while in the future of 2021–2026, it will decline to 0.57–0.60, dropping to a weak coordinated level. The conclusion could provide effective information for decision-makers to take suitable measures for the security development of a WEF system.


Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 70
Author(s):  
Maria Raposo ◽  
Carlota Xavier ◽  
Catarina Monteiro ◽  
Susana Silva ◽  
Orlando Frazão ◽  
...  

Thin graphene oxide (GO) film layers are being widely used as sensing layers in different types of electrical and optical sensor devices. GO layers are particularly popular because of their tuned interface reflectivity. The stability of GO layers is fundamental for sensor device reliability, particularly in complex aqueous environments such as wastewater. In this work, the stability of GO layers in layer-by-layer (LbL) films of polyethyleneimine (PEI) and GO was investigated. The results led to the following conclusions: PEI/GO films grow linearly with the number of bilayers as long as the adsorption time is kept constant; the adsorption kinetics of a GO layer follow the behavior of the adsorption of polyelectrolytes; and the interaction associated with the growth of these films is of the ionic type since the desorption activation energy has a value of 119 ± 17 kJ/mol. Therefore, it is possible to conclude that PEI/GO films are suitable for application in optical fiber sensor devices; most importantly, an optical fiber-based interrogation setup can easily be adapted to investigate in situ desorption via a thermally stimulated process. In addition, it is possible to draw inferences about film stability in solution in a fast, reliable way when compared with the traditional ones.


Author(s):  
Swaminathan Ganesan ◽  
Sampath Vedamanickam

In this study, the influence of upper cycle temperature (maximum temperature in a cycle) and the magnitude of applied stress on the functional properties of an SMA during partial thermomechanical cycling has been studied. A near-equiatomic NiTi SMA was chosen and tested under different upper cycle temperatures (between martensite finish (Mf) and austenite finish (Af) temperatures) and stress level (below and above the yield strength of the martensite). The upper cycle temperature was varied by controlling the magnitude of the current supply. The results show that a raise in the upper cycle temperature causes the permanent strain to increase and also lowers the stability. However, decreasing the stress imposed to a value lower than the yield strength of the martensite improves cyclic stability. The upper cycle temperature was found to influence the crack nucleation, whereas the applied stress level the crack propagation during partial thermomechanical cycling of SMAs. Therefore, decreasing the upper cycle temperature as well as the magnitude of stress applied to lower than the yield stress of martensite have been found to be suitable strategies for increasing the lifespan of SMA-based actuators during partial thermomechanical cycling.


2014 ◽  
Vol 78 (7) ◽  
pp. 1671-1675 ◽  
Author(s):  
Adam J. Roper ◽  
Peter Leverett ◽  
Timothy D. Murphy ◽  
Peter A. Williams

AbstractSynthesis and solubility studies of onoratoite have been undertaken to determine the role of this rare secondary phase in the immobilization of Sb and the conditions responsible for its formation in the supergene zone. Solubility studies were undertaken at 298.15 K. A value of ΔGfθ (Sb8O11Cl2, s, 298.15 K) = –2576 ±12 kJ mol–1 was derived. Calculations involving sénarmontite, Sb2O3, klebelsbergite, Sb4O4SO4(OH)2 and schafarzikite, FeSb2O4, show that onoratoite is a thermodynamically stable phase only at negligible activities of SO42–(aq) and low activities of Fe2+(aq), at low pH and very high activities of Cl–(aq). This explains why onoratoite is such a rare secondary phase and why it cannot exert any significant influence on the dispersion of Sb in the supergene environment.


1955 ◽  
Vol 59 (535) ◽  
pp. 506-509
Author(s):  
A. M. Dobson

The Classical method of solution of the stability of an axially–loaded continuous beam is by means of the three moments equation, using the Berry Functions, which are functions of the axial load. As the axial load approaches a value equal to the critical value for a pin–jointed beam, the Berry Functions tend to infinity, and the use of the three moments equations —(i. e. treating the end fixing moments as the independent variables)—leads to certain difficulties in the complete solution of the problem.The major difficulty lies in the question of stability. The critical value is determined by the vanishing of the determinant of the coefficients of the fixing moments in the three moments equations. This value could be found by plotting the determinant against end load (c. f. Pippard and Pritchard). However, in a problem involving a large number of bays, the calculation necessary to do this is likely to be considerable, for there may be many branches to the curve.


In this paper the stability of viscous flow between two concentric cylinders due to a pressure gradient acting round the cylinders is considered when the spacing between the cylinders is small compared with their radii. Two methods of approximate solution are described, both of which show that instability first sets in when the parameter R √( d / R 1 ) attains a value of about 36 in close agreement with earlier results of Dean (1928). The pattern of motion which then sets in is of the familar cellular type but with a marked asymmetry.


1981 ◽  
Vol 108 ◽  
pp. 461-474 ◽  
Author(s):  
D. N. Beaumont

The stability characteristics for spatially periodic parallel flows of an incompressible fluid (both inviscid and viscous) are studied. A general formula for the determination of the stability characteristics of periodic flows to long waves is obtained, and applied to approximate numerically the stability curves for the sinusoidal velocity profile. The neutral curve for the sinusoidal velocity profile is obtained analytically. The stability of two broken-line velocity profiles in an inviscid fluid is studied and the results are used to describe the overall pattern for the sinusoidal velocity profile in the case of long waves. In an inviscid fluid it is found that all periodic flows (other than the trivial flow in which the basic velocity is constant) are unstable to long waves with a value of the phase speed determined by simple integrals of the basic flow. In a viscous fluid it is found that the sinusoidal velocity profile is very unstable with the inviscid solution being a good approximation to the solution of the viscous problem when the value of the Reynolds number is greater than about 20.


2013 ◽  
Vol 283 ◽  
pp. 41-46
Author(s):  
Shao Wen Fang ◽  
Xing Fei Yuan

A 100MW solar chimney is high as one thousand meters, belonging to ultra-high-rise structure. Considering the complicated load condition, the large scale and long period of construction process, construction analysis is important to the structure. Using element birth and death technology in ANSYS, the whole construction process is simulated in this paper. Numerical results indicate that the deformation and internal force of the structure change a lot during the construction process. Great differences exist in property and magnitude between construction status and design status. To investigate the stability of the structure under wind and gravity load, the first eigen buckling mode with a value of L/300 and construction deformation are considered as initial imperfection respectively. The results show the ultimate bearing capacity of the structure considering construction deformation is lower than that considering the first-order initial imperfection.


1964 ◽  
Vol 42 (4) ◽  
pp. 731-743 ◽  
Author(s):  
Wilfred H. Nelson ◽  
R. Stuart Tobias

Alkaline aqueous niobium(V) solutions prepared by dissolving the salt K14Nb12O37•27H2O were studied by means of light scattering and by equilibrium ultracentrifugation by using both schlieren and interference optics. All three experimental methods indicate that the degree of polymerization of the polycondensed niobate anion is no less than 5 and probably has the value 6. The centrifugation data indicate that only one polycondensed species exists in the solutions. The effective charge of the niobate anion appears to be reduced appreciably by the binding of potassium ions to a value of no greater than −2. The behavior of the solutions is very similar to that observed previously with alkaline tantalum(V) solutions, and it appears very likely that the hexameric anion [HNb6O19]−7 found in niobate crystals also exists in aqueous solutions. The niobate is slightly protonated in comparison to the analogous tantalate. The stability of highly concentrated solutions containing this large polycondensed species is probably the result of the existence of a poly-ion with high symmetry which interacts only weakly with the solvent, water.


Harmonic analysis of the Moon’s shape based on all available sets of hypsometric data disclose that the surface of the Moon, far from being a mere spheroid or ellipsoid, contains many significant harmonic terms, the single largest of which are of fourth order (being about three times as large as the second harmonics). Their sum makes the Moon to deviate from a mean sphere by ± 2 km over extensive regions; and local differences attaining 8 to 9 km in eleva­tion have been noted on the limb. These facts reveal that the lunar globe must possess sufficient strength to sustain stress differences of the order of 10 9 dyn/cm 2 ; and this could scarcely be the case if the large part of the Moon’s interior were molten. As melting should be expected if the Moon contained the same proportion of radioactive elements as chondritic meteroites, it is concluded that the mean radioactive content of the lunar interior must be less than that found in stony meteorites, or the terrestrial crust. The moments of inertia about the principal axes of inertia of the lunar globe, as determined from the Moon’s physical librations, are seriously at variance with a state of hydrostatic equilibrium—for any distance between the Earth and the Moon—of a homogeneous body, and can be accounted for only by assuming an asymmetric nonhomogeneity of the lunar globe, or the existence of internal processes which could support nonequilibrium from hydrodynamically. However, an application of Chandrasekhar’s theory of viscous convection in fluid globes reveals that, if such a globe is to possess the same difference, C – A , of momenta as the Moon, the velocity of convective motion should be of the order of 10 –8 cm/s (i. e. too small for the establishment of steady flow in 10 9 y); and the 'observed' value of the Rayleigh number characteristic of the Moon is several hundred times as large as that required theoretically for the stability of the respective flow. Thermoelastic effects due to secular insolation of the lunar globe, considered recently by Levin, are shown incapable to account for a value of the ratio (C – A)/B exceeding 0∙00005; while its empirical value deduced from librations is close to 0∙00063.


Sign in / Sign up

Export Citation Format

Share Document