Effects and Mechanism of Combination of Rhein and Danshensu in the Treatment of Chronic Kidney Disease

2015 ◽  
Vol 43 (07) ◽  
pp. 1381-1400 ◽  
Author(s):  
Yue Guan ◽  
Xiao-Xiao Wu ◽  
Jia-Lin Duan ◽  
Ying Yin ◽  
Chao Guo ◽  
...  

Traditional Chinese medicine (TCM) plays a systemic role in disease treatment, targeting multiple etiological factors simultaneously. Based on clinical experience, rhubarb and Salvia miltiorrhiza are commonly prescribed together for the treatment of chronic kidney disease (CKD) and have been proven to be very effective. However, the rationale of the combination remains unclear. The major active ingredients of these two herbs are rhein (RH) and danshensu (DSS), respectively. The aim of this paper is to investigate the renoprotective effects of RH and DSS in vitro and in vivo, and the underlying mechanism. A total of 5/6 nephrectomy rats and HK-2 cells were subjected to chronic renal injury. The combination of RH and DSS conferred a protective effect, as shown by a significant improvement in the renal function, blood supply, and fibrotic degree. Proinflammatory cytokines and adhesion molecules were suppressed by RH and DSS through NK-[Formula: see text]B signaling. The combination also inhibited apoptosis by up-regulating Bcl-2 and down-regulating Bax. Inhibiting the TGF-[Formula: see text]/Smad3 pathway was at least in part involved in the antifibrotic mechanism of the combination treatment of RH and DSS. This study demonstrates for the first time the renoprotective effect and the mechanism of RH and DSS combination on chronic renal injury. It could provide experimental evidence to support the rationality of the combinatorial use of TCM in clinical practices.

2021 ◽  
Author(s):  
Yong Wu ◽  
Huan Yang ◽  
Sujuan Xu ◽  
Ming Cheng ◽  
Jie Gu ◽  
...  

Inflammatory response and renal fibrosis are the hallmarks of chronic kidney disease (CKD). However, the specific mechanism of aldosterone-induced renal injury in the progress of CKD requires elucidation. Emerging evidence has demonstrated that absent in melanoma 2 (AIM2)-mediated inflammasome activation and endoplasmic reticulum stress (ERS) play a pivotal role in the renal fibrosis. Here, we investigated whether overexpression or deficiency of AIM2 affects ERS and fibrosis in aldosterone-infused renal injury. Interestingly, we found that AIM2 was markedly expressed in the diseased proximal tubules from human and experimental chronic kidney disease. Mechanically, overactivation of AIM2 aggravated aldosterone-induced ERS and fibrotic changes in vitro while knockdown of AIM2 blunted these effects in vivo and vitro. By contrast, AIM2 deficiency ameliorated renal structure and function deterioration, decreased proteinuria levels and lower systolic blood pressure in vivo; silencing of AIM2 blocked inflammasome-mediated signaling pathway, relieved ERS and fibrotic changes in vivo. Furthermore, mineralocorticoid receptor antagonist eplerenone and ERS inhibitor tauroursodeoxycholic acid (TUDCA) had nephroprotective effects on the basis of AIM2 overactivation in vitro while they failed to produce a more remarkable reno-protective effect on the treatment of AIM2 silence in vitro. Notably, the combination of TUDCA with AIM2 knockdown significantly reduced proteinuria levels in vivo. Additionally, immunofluorescence assay identified that apoptosis-associated speck-like protein (ASC) recruitment and Gasdermin-D (GSDMD) cleavage respectively occurred in the glomeruli and tubules in vivo. These findings establish a crucial role for AIM2 inflammasome in aldosterone-induced renal injury, which may provide a novel therapeutic target for the pathogenesis of CKD.


2020 ◽  
Vol 318 (2) ◽  
pp. F475-F485 ◽  
Author(s):  
S. Rangarajan ◽  
G. Rezonzew ◽  
P. Chumley ◽  
H. Fatima ◽  
M. Y. Golovko ◽  
...  

Tobacco smoking has been identified as a risk factor in the progression of chronic kidney disease (CKD). In previous studies, we showed that nicotine induces cyclooxygenase (COX)-2 expression in vivo and in vitro and that the administration of nicotine in vivo worsens the severity of renal injury in a model of subtotal renal ablation. In the present study, we tested the role of COX-2-derived prostaglandins on the deleterious effects of nicotine in CKD. Sham and 5/6 nephrectomy (5/6Nx) rats received tap water or nicotine (100 μg/mL) in the drinking water for 12 wk. Additional groups also systemically received the COX-2 inhibitor NS-398 (1.5 mg·kg−1·day−1 via osmotic minipump). The administration of nicotine worsened renal injury and proteinuria in 5/6Nx rats and increased proteinuria in sham rats. 5/6Nx rats had increased cortical production of the prostaglandins PGE2, PGI2, PGD2, and PGF2α and of thromboxane A2. In these rats, nicotine reduced the production of all prostaglandins examined except thromboxane A2. Treatment with the COX-2 inhibitor NS-398 resulted in complete inhibition of all prostaglandins studied and ameliorated renal injury and proteinuria in 5/6Nx rats on nicotine but not in 5/6 Nx rats on tap water. Nicotine also reduced the expression of megalin in all groups examined, and this was partially prevented by COX-2 inhibition. In the present study, we showed that in CKD, nicotine worsens renal injury at least in part by producing an imbalance in the production of prostaglandins. This imbalance in the production of prostaglandins likely plays a role in the deleterious effects of smoking on the progression of CKD.


2021 ◽  
Vol 22 (3) ◽  
pp. 1407
Author(s):  
Hongxia Liu ◽  
Wang Zheng ◽  
Qianping Chen ◽  
Yuchuan Zhou ◽  
Yan Pan ◽  
...  

Nasopharyngeal carcinoma (NPC) is one of the most frequent head and neck malignant tumors and is majorly treated by radiotherapy. However, radiation resistance remains a serious obstacle to the successful treatment of NPC. The aim of this study was to discover the underlying mechanism of radioresistance and to elucidate novel genes that may play important roles in the regulation of NPC radiosensitivity. By using RNA-seq analysis of NPC cell line CNE2 and its radioresistant cell line CNE2R, lncRNA CASC19 was screened out as a candidate radioresistance marker. Both in vitro and in vivo data demonstrated that a high expression level of CASC19 was positively correlated with the radioresistance of NPC, and the radiosensitivity of NPC cells was considerably enhanced by knockdown of CASC19. The incidence of autophagy was enhanced in CNE2R in comparison with CNE2 and another NPC cell line HONE1, and silencing autophagy with LC3 siRNA (siLC3) sensitized NPC cells to irradiation. Furthermore, CASC19 siRNA (siCASC19) suppressed cellular autophagy by inhibiting the AMPK/mTOR pathway and promoted apoptosis through the PARP1 pathway. Our results revealed for the first time that lncRNA CASC19 contributed to the radioresistance of NPC by regulating autophagy. In significance, CASC19 might be a potential molecular biomarker and a new therapeutic target in NPC.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lucy J. Newbury ◽  
Jui-Hui Wang ◽  
Gene Hung ◽  
Bruce M. Hendry ◽  
Claire C. Sharpe

Abstract Chronic Kidney Disease is a growing problem across the world and can lead to end-stage kidney disease and cardiovascular disease. Fibrosis is the underlying mechanism that leads to organ dysfunction, but as yet we have no therapeutics that can influence this process. Ras monomeric GTPases are master regulators that direct many of the cytokines known to drive fibrosis to downstream effector cascades. We have previously shown that K-Ras is a key isoform that drives fibrosis in the kidney. Here we demonstrate that K-Ras expression and activation are increased in rodent models of CKD. By knocking down expression of K-Ras using antisense oligonucleotides in a mouse model of chronic folic acid nephropathy we can reduce fibrosis by 50% and prevent the loss of renal function over 3 months. In addition, we have demonstrated in vitro and in vivo that reduction of K-Ras expression is associated with a reduction in Jag1 expression; we hypothesise this is the mechanism by which targeting K-Ras has therapeutic benefit. In conclusion, targeting K-Ras expression with antisense oligonucleotides in a mouse model of CKD prevents fibrosis and protects against renal dysfunction.


2020 ◽  
Vol 13 (7) ◽  
pp. 148 ◽  
Author(s):  
Annalisa Noce ◽  
Alessio Bocedi ◽  
Margherita Campo ◽  
Giulia Marrone ◽  
Manuela Di Lauro ◽  
...  

The identification of natural bioactive compounds, able to counteract the abnormal increase of oxidative stress and inflammatory status in chronic degenerative non-communicable diseases is useful for the clinical management of these conditions. We tested an oral food supplement (OFS), chemically characterized and evaluated for in vitro and in vivo activity. Vitamin C, analyzed by High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD), was 0.19 mg/g in rosehip dry extract and 15.74 mg/capsule in the OFS. The identification of polyphenols was performed by HPLC-DAD; the total antioxidant capacity was assessed by Folin–Ciocalteu test. Total polyphenols were 14.73 mg/g gallic acid equivalents (GAE) for rosehip extract and 1.93 mg/g GAE for OFS. A total of 21 chronic kidney disease (CKD) patients and 10 healthy volunteers were recruited. The evaluation of routine laboratory and inflammatory parameters, erythrocyte glutathione transferase (e-GST), human oxidized serum albumin (HSAox), and assessment of body composition were performed at two different times, at baseline and after 5 weeks of OFS assumption. In the study, we highlighted a significant decrease of traditional inflammatory biomarkers (such as C-reactive protein, erythrocyte sedimentation rate, platelet to lymphocyte ratio) and other laboratory parameters like e-GST, azotaemia, and albuminuria after OFS treatment in CKD patients. Moreover, we demonstrated a lipid profile improvement in CKD patients after OFS supplementation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qing Li ◽  
Changying Xing ◽  
Yanggang Yuan

Chronic kidney disease (CKD) is a common progressive disease that is typically characterized by the permanent loss of nephrons and an eventual decline in glomerular filtration rate. CKD increases mortality and has a significant impact on the quality of life and the economy, which is becoming a major public health issue worldwide. Since current conventional-medicine treatment options for CKD are not satisfactory, many patients seek complementary and alternative medicine treatments including Traditional Chinese Medicine. Herbal medicine is often used to relieve symptoms of renal diseases in the clinic. The kidney is abundant in the number of mitochondria, which provide enough energy for renal function and metabolism. In recent years, a vital role for mitochondrial dysfunction has been suggested in CKD. Mitochondria have become a new target for the treatment of diseases. A growing number of studies have demonstrated herbal medicine could restore mitochondrial function and alleviate renal injury both in vivo and in vitro. In this review, we sum up the therapeutic effect of herbal medicine in CKD via targeting mitochondrial function. This implies future strategies in preventing CKD.


2018 ◽  
Vol 50 (2) ◽  
pp. 654-667 ◽  
Author(s):  
Juan Kong ◽  
Li Han ◽  
Han Su ◽  
Yihan Hu ◽  
Xueshi Huang ◽  
...  

Background/Aims: Nephropathy related with renin can be alleviated with ACE-inhibitors or AT1R blockers, whereas they might be ineffective after long-term administration because of a feedback production of enhanced renin. Therefore, it is urgent to develop a new category of anti-nephropathy medicine directly targeting renin. Riligustilide (C20), originally isolated from the Chinese herb Ligusticumporteri, a rhizome, was confirmed effective against many diseases. Methods: The therapeutic effect of C20 on renal injury and its underlying mechanism were investigated in three different nephrotic models, which were spontaneously hypertension rats (SHR) model, diabetic nephropathy in BTBR ob/ob mice model and 5/6-nephrectomized (5/6NX) rats model. Results: The intensity of kidney fibrosis was extensively decreased in the C20-treated rats compared to the vehicle animals. C20 significantly alleviated renal injury much more in 5/6 NX rats than in vehicle group. The rats in 5/6 NX without administrated C20 developed albuminuria earlier with more severe symptoms. Additionally, our findings showed that C20 down-regulated the renin expression and relocation of CREB-CBP complex in vivo and in vitro. Conclusion: C20 plays importantly reno-protective roles most likely through the relocation of CREB-CBP complex.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1624 ◽  
Author(s):  
Danja J. Den Hartogh ◽  
Evangelia Tsiani

Different diseases and disorders that affect the kidneys include, but are not limited to, glomerulonephritis, diabetic nephropathy, polycystic kidney disease, kidney stones, renal fibrosis, sepsis, and renal cell carcinoma. Kidney disease tends to develop over many years, making it difficult to identify until much later when kidney function is severely impaired and undergoing kidney failure. Although conservative care, symptom management, medication, dialysis, transplantation, and aggressive renal cancer therapy are some of the current strategies/approaches to kidney disease treatment, new preventative targeted therapies are needed. Epidemiological studies have suggested that a diet rich in fruits and vegetables is associated with health benefits including protection against kidney disease and renal cancer. Resveratrol, a polyphenol found in grapes and berries, has been reported to have antioxidant, anti-inflammatory, antidiabetic, hepatoprotective, neuroprotective, and anti-cancer properties. The current review summarizes the existing in vitro and in vivo animal and human studies examining the nephroprotective effects of resveratrol.


Author(s):  
Jonathan Wagmaister ◽  
Kelvin Zheng ◽  
Muhammad Choudhury ◽  
Majid Eshghi ◽  
Sensuke Konno

Background: Hypothesizing that oxidative stress (OXS) could be a key pathogenic factor for the incidence of chronic kidney disease (CKD), we investigated if the Poria mushroom extract, PE, with possible antioxidant activity, would prevent the incidence of CKD in rats. Materials and Methods: Antioxidant activity of PE was examined against OXS induced by hydrogen peroxide (H2O2) in renal LLC-PK1 cells. Whether PE could prevent the development of CKD in the rat kidneys, mediated through adenine (ADN)-induced OXS, was also examined. After 2 weeks, blood and kidney specimens were collected from rats for blood, histopathologic, and biochemical analyses. Results: Although H2O2-induced OXS led to a significant cell viability reduction in LLC-PK1 cells, PE significantly diminished OXS and sustained high (~70%) cell viability. In rats, ADN-given rats showed typical renal dysfunction with palpable kidney damage; however, PE supplement improved renal function with better histology. A ~2.2-fold increased OXS level was also seen in ADN-given rats but it was reduced by ~27% with PE supplement. Moreover, analysis of kidney injury biomarkers further confirmed extended kidney damage by ADN. Nevertheless, PE effectively maintained the natural status of those markers, protecting the rat kidneys. Conclusions: OXS is indeed harmful to renal cells in vitro and could even lead to ADN-induced CKD in vivo. However, PE appears to have antioxidant activity capable of protecting renal cells and the rat kidneys from such detrimental OXS. Therefore, it is rather possible that PE could be a natural antioxidant with prophylactic effect against OXS-induced CKD.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yunjing Zhang ◽  
Shiwen Wang ◽  
Yukun Chen ◽  
Junqian Zhang ◽  
Jing Yang ◽  
...  

Esophageal squamous cell carcinoma (ESCC) is a recalcitrant cancer. The Chinese herbal monomer fangchinoline (FCL) has been reported to have anti-tumor activity in several human cancer cell types. However, the therapeutic efficacy and underlying mechanism on ESCC remain to be elucidated. In the present study, for the first time, we demonstrated that FCL significantly suppressed the growth of ESCC both in vitro and in vivo. Mechanistic studies revealed that FCL-induced G1 phase cell-cycle arrest in ESCC which is dependent on p21 and p27. Moreover, we found that FCL coordinatively triggered Noxa-dependent intrinsic apoptosis and DR5-dependent extrinsic apoptosis by transactivating ATF4, which is a novel mechanism. Our findings elucidated the tumor-suppressive efficacy and mechanisms of FCL and demonstrated FCL is a potential anti-ESCC agent.


Sign in / Sign up

Export Citation Format

Share Document