Oligosaccharides from Traditional Chinese Herbal Medicines: A Review of Chemical Diversity and Biological Activities

Author(s):  
Mengyun Liu ◽  
Miaomiao Cai ◽  
Ping Ding

Most of traditional Chinese herbal medicine (TCHM) substances come from medicinal plants, among which oligosaccharides have gradually attracted widespread attention at home and abroad due to their important biological activities and great medicinal potential. Numerous in vitro and in vivo experiments exhibited that oligosaccharides possess various activities, such as antitumor, anti-oxidation, modulate the gut microflora, anti-inflammatory, anti-infection, and immune-regulatory activities. Generally, biological activities are closely related to chemical structures, including molecular weight, monosaccharide composition, glycosidic bond connection, etc. The structural analysis of oligosaccharides is an important basis for studying their structure–activity relationship, but the structural diversity and complexity of carbohydrate compounds limit the study of oligosaccharides activities. Understanding the structures and biological functions of oligosaccharides is important for the development of new bioactive substances with natural oligosaccharides. This review provides a systematic introduction of the current knowledge of the chemical structures and biological activities of oligosaccharides. Most importantly, the reported chemical characteristics and biological activities of the famous TCHM oligosaccharides were briefly summarized, including Morinda officinalis, Rehmannia glutinosa, Arctium lappa, Polygala tenuifolia, Panax ginseng,Lycium barbarum,andAstragalus membranaceus. TCHM oligosaccharides play an important role in nutrition, health care, disease diagnosis and prevention as well as have broad application prospects in the field of medicine.

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2506
Author(s):  
Wamidh H. Talib ◽  
Ahmad Riyad Alsayed ◽  
Alaa Abuawad ◽  
Safa Daoud ◽  
Asma Ismail Mahmod

Melatonin is a pleotropic molecule with numerous biological activities. Epidemiological and experimental studies have documented that melatonin could inhibit different types of cancer in vitro and in vivo. Results showed the involvement of melatonin in different anticancer mechanisms including apoptosis induction, cell proliferation inhibition, reduction in tumor growth and metastases, reduction in the side effects associated with chemotherapy and radiotherapy, decreasing drug resistance in cancer therapy, and augmentation of the therapeutic effects of conventional anticancer therapies. Clinical trials revealed that melatonin is an effective adjuvant drug to all conventional therapies. This review summarized melatonin biosynthesis, availability from natural sources, metabolism, bioavailability, anticancer mechanisms of melatonin, its use in clinical trials, and pharmaceutical formulation. Studies discussed in this review will provide a solid foundation for researchers and physicians to design and develop new therapies to treat and prevent cancer using melatonin.


2020 ◽  
Vol 17 (36) ◽  
pp. 871-883
Author(s):  
Moath Kahtan BASHIR ◽  
Yasser Fakri MUSTAFA ◽  
Mahmood Khudhayer OGLAH

Cancer constitutes one of the most severe public health menaces worldwide. It is imperative to synthesize new compounds and explore their antitumor activity to find a potential resolution to this health problem. Synthesis of new scaffolds and evaluating their antitumor activity is a relevant approach for combating cancer development. Coumarins can exhibit diverse biological activities, and one of these is the antitumor activity. This study aimed to synthesize new coumarins by grafting their precursors to the aromatic amines via Schiff base formation and evaluating their introductory antitumor activity. New multifunctional coumarins (MC1-MC9) were prepared by integrating a functionalized coumarin with different toluidine derivatives via a Schiff-base linkage. Spectral characterization inspired by FTIR, 1H- and 13C- NMR spectroscopies has established the chemical structures of the synthesized products. The antitumor activity was explored in vitro versus four dominant human cancer lines, including HeLa, SKG, MCF-7, and AMN3. The outcomes acquired from the cell viability assay inspected by applying MTT dye have revealed that the synthesized multifunctional coumarins, particularly MC3, have a hopeful activity. It can be concluded that a similar trend of activity against the test cell lines was observed for the synthesized coumarins, with the best action being versus MCF-7 and the least one versus AMN3. This study not only affords a new scaffold of a significant antitumor activity but also provides some insights into its structureactivity relationship.


Author(s):  
Zahra Hashemi ◽  
Mohammad Ali Ebrahimzadeh

Abstract: Inherited beta-thalassemia is a major disease caused by irregular production of hemoglobin through reducing beta-globin chains. It has been observed that increasing fetal hemoglobin (HbF) production improves symptoms in the patients. Therefore, an increase in the level of HbF has been an operative approach for treating patients with beta-thalassemia. This review represents compounds with biological activities and pharmacological properties that can promote the HBF level and therefore used in the β-thalassemia patients' therapy. Various natural products with different mechanisms of action can be helpful in this medication cure. Clinical trials were efficient in improving the signs of patients. Association of in vivo, and in vitro studies of HbF induction and γ-globin mRNA growth displays that in vitro experiments could be an indicator of the in vivo response. The current study shows that; (a) HbF inducers can be grouped in several classes based on their chemical structures and mechanism of actions; b) According to several clinical trials, well-known drugs such as hydroxyurea and decitabine are useful HbF inducers; (c) The cellular biosensor K562 carrying genes under the control of the human γ-globin and β-globin gene promoters were applied during the researches; d) New natural products and lead compounds were found based on various studies as HbF inducers.


2020 ◽  
Vol 15 (8) ◽  
pp. 1934578X2093717
Author(s):  
Chengniu Wang ◽  
Jie Hui ◽  
Xinhui Zhu ◽  
Shengyu Cui ◽  
Zhiming Cui ◽  
...  

Studies have shown that lobetyolin (LBT), a component of traditional Chinese herbal medicine, has many very good biological activities and functions. However, its side effects and toxicities have not been evaluated adequately. In this work, we investigated the effects of LBT in transgenic zebrafish. LBT treatments promoted angiogenesis and led to vascular morphological malformation in zebrafish embryos, although they were normal in appearance. Interestingly, our results indicated that LBT has a function of promoting nerve growth in the embryonic stage of zebrafish. We also treated the zebrafish with combretastatin A-4 (which resulted in neuronal apoptosis) and LBT simultaneously and found that LBT promoted nerve growth at higher concentrations. Taken together, our findings clearly display that LBT efficiently promotes angiogenesis, leading to vascular morphological malformation, has low toxicity, and notably promotes neuronal development in zebrafish.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 129
Author(s):  
Dario Matulja ◽  
Maria Kolympadi Markovic ◽  
Gabriela Ambrožić ◽  
Sylvain Laclef ◽  
Sandra Kraljević Pavelić ◽  
...  

Gorgonian corals, which belong to the genus Eunicella, are known as natural sources of diverse compounds with unique structural characteristics and interesting bioactivities both in vitro and in vivo. This review is focused primarily on the secondary metabolites isolated from various Eunicella species. The chemical structures of 64 compounds were divided into three main groups and comprehensively presented: a) terpenoids, b) sterols, and c) alkaloids and nucleosides. The observed biological activities of depicted metabolites with an impact on cytotoxic, anti-inflammatory, and antimicrobial activities were reviewed. The most promising biological activities of certain metabolites point to potential candidates for further development in pharmaceutical, cosmetic, and other industries, and are highlighted. Total synthesis or the synthetic approaches towards the desired skeletons or natural products are also summarized.


Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 321 ◽  
Author(s):  
Minghua Jiang ◽  
Zhenger Wu ◽  
Heng Guo ◽  
Lan Liu ◽  
Senhua Chen

Marine-derived fungi are a significant source of pharmacologically active metabolites with interesting structural properties, especially terpenoids with biological and chemical diversity. In the past five years, there has been a tremendous increase in the rate of new terpenoids from marine-derived fungi being discovered. In this updated review, we examine the chemical structures and bioactive properties of new terpenes from marine-derived fungi, and the biodiversity of these fungi from 2015 to 2019. A total of 140 research papers describing 471 new terpenoids of six groups (monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, and meroterpenes) from 133 marine fungal strains belonging to 34 genera were included. Among them, sesquiterpenes, meroterpenes, and diterpenes comprise the largest proportions of terpenes, and the fungi genera of Penicillium, Aspergillus, and Trichoderma are the dominant producers of terpenoids. The majority of the marine-derived fungi are isolated from live marine matter: marine animals and aquatic plants (including mangrove plants and algae). Moreover, many terpenoids display various bioactivities, including cytotoxicity, antibacterial activity, lethal toxicity, anti-inflammatory activity, enzyme inhibitor activity, etc. In our opinion, the chemical diversity and biological activities of these novel terpenoids will provide medical and chemical researchers with a plenty variety of promising lead compounds for the development of marine drugs.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Fabien Le Chevalier ◽  
Isabelle Correia ◽  
Lucrèce Matheron ◽  
Morgan Babin ◽  
Mireille Moutiez ◽  
...  

Abstract Background Cyclodipeptide oxidases (CDOs) are enzymes involved in the biosynthesis of 2,5-diketopiperazines, a class of naturally occurring compounds with a large range of pharmaceutical activities. CDOs belong to cyclodipeptide synthase (CDPS)-dependent pathways, in which they play an early role in the chemical diversification of cyclodipeptides by introducing Cα-Cβ dehydrogenations. Although the activities of more than 100 CDPSs have been determined, the activities of only a few CDOs have been characterized. Furthermore, the assessment of the CDO activities on chemically-synthesized cyclodipeptides has shown these enzymes to be relatively promiscuous, making them interesting tools for cyclodipeptide chemical diversification. The purpose of this study is to provide the first completely microbial toolkit for the efficient bioproduction of a variety of dehydrogenated 2,5-diketopiperazines. Results We mined genomes for CDOs encoded in biosynthetic gene clusters of CDPS-dependent pathways and selected several for characterization. We co-expressed each with their associated CDPS in the pathway using Escherichia coli as a chassis and showed that the cyclodipeptides and the dehydrogenated derivatives were produced in the culture supernatants. We determined the biological activities of the six novel CDOs by solving the chemical structures of the biologically produced dehydrogenated cyclodipeptides. Then, we assessed the six novel CDOs plus two previously characterized CDOs in combinatorial engineering experiments in E. coli. We co-expressed each of the eight CDOs with each of 18 CDPSs selected for the diversity of cyclodipeptides they synthesize. We detected more than 50 dehydrogenated cyclodipeptides and determined the best CDPS/CDO combinations to optimize the production of 23. Conclusions Our study establishes the usefulness of CDPS and CDO for the bioproduction of dehydrogenated cyclodipeptides. It constitutes the first step toward the bioproduction of more complex and diverse 2,5-diketopiperazines.


1986 ◽  
Vol 14 (03n04) ◽  
pp. 157-160 ◽  
Author(s):  
Akira Miyake ◽  
Jin-Woo Lee ◽  
Keiichi Tasaka ◽  
Shirou Ohtsuka ◽  
Toshihiro Aono

For examination of the effect on luteinizing hormone (LH) release of Wen-Jing-Tang, a traditional Chinese herbal medicine, the pituitary from normal female rats in diestrus was perifused alone or in sequence with the mediobasal hypothalamus (MBH) in a sequential double-chamber perifusion system. Wen-Jing-Tang at 5 or 500 μg/ml induced significant LH release (60-95 % increase) from the pituitary in series with the MBH, but had no effect on LH release from the pituitary perifused alone. These data suggest that Wen-Jing-Tang induces LH release from the pituitary through hypothalamic LH-RH.


Author(s):  
Bindu ◽  
Rama Bhat ◽  
Girish ◽  
Krishna Prasad

Plant-derived compounds have been used clinically to treat type 2 diabetes for many years as they also exert additional beneficial effects on various other disorders. PI3K pathway is the major pathway activated by insulin receptor (IR). It induces glucose uptake, glycogen synthesis, protein synthesis, cell growth and differentiation. Hence metabolic assay was employed to assess glucose uptake based on the property of 3T3-L 1 cells to differentiate into adipocytes which can take up the glucose in medium due to the effect of insulin or insulin like molecules. The results of the current study showed that plants extract probably exerts its anti-diabetic properties by stimulating glucose uptake in adipocytes with significant inhibition of adipogenesis demonstrating reliable relative potency in comparision to the commercial insulin.  The ability of existing therapies to target various aspects of the insulin resistance syndrome induces other metabolic abnormalities, chiefly those involved in lipid metabolism. In this preliminary in-vitro study Costusspeciosus plant extract demonstrated to have significant relative potency in comparison to commercial Insulin which can be exploited to treat diabetes using natural herbal extracts Current study leads researchers to elucidate the chemical structures, isolate active ingrediatents in the crude extract for such biological activities in reference to commercial and recombinant insulins.


2021 ◽  
Author(s):  
Jiao Li ◽  
Chun-Lin Zhuang

The indole scaffold is one of the most important heterocyclic ring systems for pharmaceutical development, and serves as an active moiety in several clinical drugs. Fungi derived from marine origin are more liable to produce novel indole-containing natural products due to their extreme living environments. The indole alkaloids from marine fungi have drawn considerable attention for their unique chemical structures and significant biological activities. This review attempts to provide a summary of the structural diversity of marine fungal indole alkaloids including prenylated indoles, diketopiperazine indoles, bisindoles or trisindoles, quinazoline-containing indoles, indole-diterpenoids, and other indoles, as well as their known biological activities, mainly focusing on cytotoxic, kinase inhibitory, antiinflammatory, antimicrobial, anti-insecticidal, and brine shrimp lethal effects. A total of 306 indole alkaloids from marine fungi have been summarized, covering the references published from 1995 to early 2021, expecting to be beneficial for drug discovery in the future.


Sign in / Sign up

Export Citation Format

Share Document