scholarly journals MULTIVERSE IN THE THIRD QUANTIZED HORAVA–LIFSHITZ THEORY OF GRAVITY

2012 ◽  
Vol 27 (02) ◽  
pp. 1250007 ◽  
Author(s):  
MIR FAIZAL

In this paper we analyze the third quantization of Horava–Lifshitz theory of gravity without detail balance. We show that the Wheeler–DeWitt equation for Horava–Lifshitz theory of gravity in minisuperspace approximation becomes the equation for time-dependent harmonic oscillator. After interpreting the scaling factor as the time, we are able to derive the third quantized wave function for multiverse. We also show in third quantized formalism it is possible that the universe can form from nothing. Then we go on to analyze the effect of introducing interactions in the Wheeler–DeWitt equation. We see how this model of interacting universes can be used to explain baryogenesis with violation of baryon number conservation in the multiverse. We also analyze how this model can possibly explain the present value of the cosmological constant. Finally we analyze the possibility of the multiverse being formed from perturbations around a false vacuum and its decay to a true vacuum.

2018 ◽  
Vol 27 (03) ◽  
pp. 1850022 ◽  
Author(s):  
B. G. Sidharth ◽  
C. R. Das ◽  
L. V. Laperashvili ◽  
H. B. Nielsen

In the present paper, assuming the Multiple Point Principle (MPP) as a new law of Nature, we considered the existence of the two degenerate vacua of the Universe: the first Electroweak (EW) vacuum at [Formula: see text][Formula: see text]GeV — “true vacuum”, and the second Planck scale “false vacuum” at [Formula: see text] GeV. In these vacua, we investigated different topological defects. The main aim of this paper is an investigation of the black-hole-hedgehogs configurations as defects of the false vacuum. In the framework of the [Formula: see text] gravity, described by the Gravi-Weak unification model, we considered a black-hole solution, which corresponds to a “hedgehog” — global monopole, that has been “swallowed” by the black-hole with mass core [Formula: see text][Formula: see text]GeV and radius [Formula: see text][Formula: see text]GeV[Formula: see text]. Considering the results of the hedgehog lattice theory in the framework of the [Formula: see text] Yang–Mills gauge-invariant theory with hedgehogs in the Wilson loops, we have used the critical value of temperature for the hedgehogs confinement phase ([Formula: see text][Formula: see text]GeV). This result gave us the possibility to conclude that the SM shows a new physics with contributions of the [Formula: see text]-triplet Higgs bosons at the scale [Formula: see text][Formula: see text]TeV. Theory predicts the stability of the EW-vacuum and the accuracy of the MPP.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Marek Lewicki ◽  
Oriol Pujolàs ◽  
Ville Vaskonen

AbstractQuasi-conformal models are an appealing scenario that can offer naturally a strongly supercooled phase transition and a period of thermal inflation in the early Universe. A crucial aspect for the viability of these models is how the Universe escapes from the supercooled state. One possibility is that thermal inflation phase ends by nucleation and percolation of true vacuum bubbles. This route is not, however, always efficient. In such case another escape mechanism, based on the growth of quantum fluctuations of the scalar field that eventually destabilize the false vacuum, becomes relevant. We study both of these cases in detail in a simple yet representative model. We determine the duration of the thermal inflation, the curvature power spectrum generated for the scales that exit horizon during the thermal inflation, and the stochastic gravitational wave background from the phase transition. We show that these gravitational waves provide an observable signal from the thermal inflation in almost the entire parameter space of interest. Furthermore, the shape of the gravitational wave spectrum can be used to ascertain how the Universe escaped from supercooling.


2019 ◽  
Vol 950 (8) ◽  
pp. 2-11
Author(s):  
S.A. Tolchelnikova ◽  
K.N. Naumov

The Euclidean geometry was developed as a mathematical system due to generalizing thousands years of measurements on the plane and spherical surfaces. The development of celestial mechanics and stellar astronomy confirmed its validity as mathematical principles of natural philosophy, in particular for studying the Solar System bodies’ and Galaxy stars motions. In the non-Euclidean geometries by Lobachevsky and Riemann, the third axiom of modern geometry manuals is substituted. We show that the third axiom of these manuals is a corollary of the Fifth Euclidean postulate. The idea of spherical, Riemannian space of the Universe and local curvatures of space, depending on body mass, was inculcated into celestial mechanics, astronomy and geodesy along with the theory of relativity. The mathematical apparatus of the relativity theory was created from immeasurable quantities


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 101
Author(s):  
Maxim Eingorn ◽  
Andrew McLaughlin ◽  
Ezgi Canay ◽  
Maksym Brilenkov ◽  
Alexander Zhuk

We investigate the influence of the chimney topology T×T×R of the Universe on the gravitational potential and force that are generated by point-like massive bodies. We obtain three distinct expressions for the solutions. One follows from Fourier expansion of delta functions into series using periodicity in two toroidal dimensions. The second one is the summation of solutions of the Helmholtz equation, for a source mass and its infinitely many images, which are in the form of Yukawa potentials. The third alternative solution for the potential is formulated via the Ewald sums method applied to Yukawa-type potentials. We show that, for the present Universe, the formulas involving plain summation of Yukawa potentials are preferable for computational purposes, as they require a smaller number of terms in the series to reach adequate precision.


2015 ◽  
Vol 30 (09) ◽  
pp. 1550044 ◽  
Author(s):  
L. V. Laperashvili ◽  
H. B. Nielsen ◽  
A. Tureanu

We develop a self-consistent Spin (4, 4)-invariant model of the unification of gravity with weak SU(2) gauge and Higgs fields in the visible and invisible sectors of our universe. We consider a general case of the graviweak unification, including the higher-derivative super-renormalizable theory of gravity, which is a unitary, asymptotically-free and perturbatively consistent theory of the quantum gravity.


2018 ◽  
Vol 27 (14) ◽  
pp. 1830009
Author(s):  
Virginia Trimble

A large majority of the physics and astronomy communities are now sure that gravitational waves exist, can be looked for, and can be studied via their effects on laboratory apparatus as well as on astronomical objects. So far, everything found out has agreed with the predictions of general relativity, but hopes are high for new information about the universe and its contents and perhaps for hints of a better theory of gravity than general relativity (which even Einstein expected to come eventually). This is one version of the story, from 1905 to the present, told from an unusual point of view, because the author was, for 28.5 years, married to Joseph Weber, who built the first detectors starting in the early 1960s and operated one or more until his death on 30 September 2000.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Alexander P. Sobolev

AbstractThe gravitational equations were derived in general relativity (GR) using the assumption of their covariance relative to arbitrary transformations of coordinates. It has been repeatedly expressed an opinion over the past century that such equality of all coordinate systems may not correspond to reality. Nevertheless, no actual verification of the necessity of this assumption has been made to date. The paper proposes a theory of gravity with a constraint, the degenerate variants of which are general relativity (GR) and the unimodular theory of gravity. This constraint is interpreted from a physical point of view as a sufficient condition for the adiabaticity of the process of the evolution of the space–time metric. The original equations of the theory of gravity with the constraint are formulated. On this basis, a unified model of the evolution of the modern, early, and very early Universe is constructed that is consistent with the observational astronomical data but does not require the hypotheses of the existence of dark energy, dark matter or inflatons. It is claimed that: physical time is anisotropic, the gravitational field is the main source of energy of the Universe, the maximum global energy density in the Universe was 64 orders of magnitude smaller the Planckian one, and the entropy density is 18 orders of magnitude higher the value predicted by GR. The value of the relative density of neutrinos at the present time and the maximum temperature of matter in the early Universe are calculated. The wave equation of the gravitational field is formulated, its solution is found, and the nonstationary wave function of the very early Universe is constructed. It is shown that the birth of the Universe was random.


2020 ◽  
Vol 30 (6) ◽  
pp. 239-282

The focus of this article is a symbolic image often found in world mythology - a giant snake or a dragon biting its own tail. This image is usually denoted by the Greek word “ouroboros” ( οὐροβόρος ), which means literally “eating its own tail.” This essay is devoted to an interpretation of this symbol, which the author sees as leading to the much broader topic of human unfreedom and the forms that this unfreedom takes. The first section deals with the unique features of Gnosticism which have made it appealing in extremely varied times and situations. Theauthor’s reflections start from understanding the Gnostic worldview as an expression of apprehensiveness about the radical otherworldliness of the human spirit and its alienation from the universe. The second section deals with the symbolism of the ouroboros and its place in Gnostic conceptual schemes as a reference to the closed cycle of nature that enslaves the human spirit. The third section attempts to decipher layer by layer the Gnostic conceptions associated with the ouroboros. Various levels of interpretation are identified: literal, mythological-magical, psychological-ascetic and socio-political. In the fourth section, the author connects Gnostic ideas with Christianity by interpreting St. Paul’s Epistles, particularly his ideas concerning rulers and authorities. The place occupied by the ouroboros in the Christian universe is analyzed. The last section relies on the ideas of René Girard, Jacques Lacan and Alain Badiou to illustrate the manifestations of the ouroboros in different dimensions of human existence, both individual and collective, with special emphasis on human desire and its futile circlings.


Author(s):  
JESSICA RAWSON

Mountainous landscapes, with massive crags and narrow fissures between rocks, through which water spouts, are among the principal subjects of paintings in China. This chapter addresses the question, why, in the first place, were these subjects chosen? It focuses on developments made during the Qin (221–207 bc) and Han (206 bc–ad 220) dynasties, from the third century bc onwards. It explores the ways in which the conditions prevailing in the Qin and Han periods moulded some aspects of the later Chinese practice. It is argued that the ways in which the Chinese from the Han period onwards viewed the cosmos determined their choice of mountains as a major subject for painted images. The chapter discusses attitudes to the cosmos and the aesthetic consequences of these views. It considers the whole range of ideas about the universe and not simply with depictions or models of mountains as representing one part of the cosmos.


2019 ◽  
pp. 64-72
Author(s):  
Nicholas Mee

Most of the matter in the universe exists in an unknown form called dark matter. All estimates of the mass of galaxies and galaxy clusters suggest they contain far more matter than is visible to us in the form of stars. Conventional explanations, such as the existence of large quantities of burnt-out stars known as MACHOs or dark gas clouds, have been ruled out. The most popular explanation is that dark matter consists of vast quantities of hypothetical stable particles known as WIMPs that were produced in vast quantities in the very early universe. Many laboratories around the world are searching for signs of these particles. These include the Italian Gran Sasso laboratory running the XENON100 experiment. Some theorists have suggested the evidence for dark matter would disappear if we had a better theory of gravity. Analysis of the Bullet Cluster indicates such proposals will not work.


Sign in / Sign up

Export Citation Format

Share Document