Wide-band perfect optical absorption and photo-thermal effect for three-tier nanogate

2014 ◽  
Vol 28 (16) ◽  
pp. 1450135
Author(s):  
G. W. Cai ◽  
P. Ding ◽  
J. Q. Wang ◽  
E. J. Liang

This paper designed a perfect optical absorber based on three-tier gate nanostructure, which shows a wide-band perfect absorption in the wavelength range of 200–560 nm as a transverse wave incidents to the nanostructure with the incident angle 35°< θ< 65°. When θ = 45°, a wide absorption band with the absorption rate more than 94% is observed, with the maximum of absorption rate reaching 99.3% at the wavelength of 430 nm. We also analyze the thermal characteristics of the perfect absorber. The band ranging from 560 nm to 1200 nm presents an increasing absorption rate with the increase of temperature. The calculation results of multi-physics analysis indicate that different cooling method causes different temperature distribution for the perfect absorber. This three-tier gate perfect absorber may find applications on broadband visible detectors, microbolometer and thermal imaging.

2021 ◽  
Vol 9 ◽  
Author(s):  
Xuehan Liu ◽  
Keyang Li ◽  
Zhao Meng ◽  
Zhun Zhang ◽  
Zhongchao Wei

A subwavelength metamaterial perfect absorber (MPA) in optical communication band was proposed and tested using the finite-difference time-domain method. The absorber is periodic and comprises a top layer of diamond silicon surrounded by L-shaped silicon and a gold layer on the substrate. It can achieve dual-band perfect absorption, and one of the peaks is in the optical communication band. By changing the gap (g) between two adjacent pieces of L-shaped silicon, and the thickness (h) of the silicon layer, the resonance wavelength of absorption peak can be tuned. When the incident electromagnetic wave entered the absorber, the metamaterial absorber could almost completely consume the incident electromagnetic waves, thereby achieving more than 99% perfect absorption. The absorption peak reaches 99.986% at 1310 nm and 99.421% at 1550 nm. Moreover, the MPA exposed to different ambient refraction indexes can be applied as plasma sensors, and can achieve multi-channel absorption with high figure of merit (FOM*) value and refractive index (RI) sensitivity. The FOM* values at 1310 nm and 1550 nm are 6615 and 168, respectively, and both resonance peaks have highly RI sensitivity. The results confirm that the MPA is a dual-band, polarization-independent, wide-angle absorber and insensitive to incident angle. Thence it can be applied in the fields of optical communication, used as a light-wave filter and plasma sensor, and so on.


2021 ◽  
Vol 2109 (1) ◽  
pp. 012015
Author(s):  
Yiran Guo ◽  
Yunping Qi ◽  
Chuqin Liu ◽  
Weiming Liu ◽  
Xiangxian Wang

Abstract Graphene, as a new nano-material, according to the physical properties of electric field localization and selective absorption on light of surface plasmon resonance (SPR), a tunable, multi-band and wide-angle perfect absorber based on crosshair-shaped graphene is devised by using the Finite Difference in Time Domain (FDTD) method. In this paper, the effects of chemical potential, relaxation time, and incident angle of light on the absorptivity of graphene are systematically discussed. The simulation experiment shows that there are two absorption peaks with perfect absorption rate appeared in the study range, and the maximum modulation index can be obtained by changing the relaxation time. Finally, it proves that the absorber is insensitive to wide-angle of light. Thus, it is able to be concluded that the absorber has a great reference value to sensor, wireless communication, biomedical and other fields.


Photonics ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 57
Author(s):  
Lei Zhang ◽  
Kun Wang ◽  
Hui Chen ◽  
Yanpeng Zhang

Perfect absorbers have been extensively investigated due to their significant value in solar cell, photodetection, and stealth technologies. Various subwavelength structures have been proposed to improve the absorption performances, such as high absorptance, broad band, and wide absorption angle. However, excellent performances usually put forward higher requirements on structural designs, such as varying the geometry sizes or shapes to fit different center wavelengths, which inevitably increases the fabrication burden. Here, a planar sandwich structure involving a layer of highly lossy material is proposed to achieve a robust perfect absorption with 95% absorptance ranging from the visible to near infrared range. Such an excellent absorption performance is also polarization-independent and applicable to a wide incident angle. Furthermore, the proposed design can also be applied to conformal surfaces with a 90% fluctuation over a steep surface. We believe that the proposed perfect absorber with distinguished performances can find wide application.


2019 ◽  
Vol 16 (9) ◽  
pp. 3698-3702
Author(s):  
Fujuan Huang ◽  
Yongqi Fu ◽  
Shaoli Zhu

We report a perfect metasurface structure-based optical absorber consisting of a tri-layer metaldielectric-metal system in ultraviolet band. Optical power absorption of over 91% has been observed in entire ultraviolet band, and can even reach to the level of as high as 99% in a certain local near waveband. Unique properties of the perfect absorption are independent on polarization state of the incoming light, and insensitive to variation of structural dimension. We discuss the effect of geometrical parameters of the structure such as height and radius on the basis of theoretical calculation results. In addition, the influence of materials upon performance of the absorber is presented. The efficient light absorption can be attributed to plasmonic resonance.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 488 ◽  
Author(s):  
Pinghui Wu ◽  
Congfen Zhang ◽  
Yijun Tang ◽  
Bin Liu ◽  
Li Lv

A simple metamaterial absorber is proposed to achieve near-perfect absorption in visible and near-infrared wavelengths. The absorber is composed of metal-dielectric-metal (MIM) three-layer structure. The materials of these three-layer structures are Au, SiO2, and Au. The top metal structure of the absorber is composed of hollow three-dimensional metal rings regularly arranged periodically. The results show that the high absorption efficiency at a specific wavelength is mainly due to the resonance of the Fabry–Perot effect (FP) in the intermediate layer of the dielectric medium, resulting in the resonance light being trapped in the middle layer, thus improving the absorption efficiency. The almost perfect multiband absorption, which is independent of polarization angle and insensitivity of incident angle, lends the absorber great application prospects for filtering and optoelectronics.


Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1038 ◽  
Author(s):  
Huixuan Gao ◽  
Wei Peng ◽  
Shuwen Chu ◽  
Wenli Cui ◽  
Zhi Liu ◽  
...  

The spectral range of solar radiation observed on the earth is approximately 295 to 2500 nm. How to widen the absorption band of the plasmonic absorber in this range has become a hot issue in recent years. In this paper, we propose a highly applicable refractory perfect absorber with an elliptical titanium nanodisk array based on a silica–titanium–silica–titanium four-layer structure. Through theoretical design and numerical demonstration, the interaction of surface plasmon resonance with the Fabry–Perot cavity resonance results in high absorption characteristics. Our investigations illustrate that it can achieve ultra-broadband absorption above 90% from a visible 550-nm wavelength to a near-infrared 2200-nm wavelength continuously. In particular, a continuous 712-nm broadband perfect absorption of up to 99% is achieved from wavelengths from 1013 to 1725 nm. The air mass 1.5 solar simulation from a finite-difference time domain demonstrates that this absorber can provide an average absorption rate of 93.26% from wavelengths of 295 to 2500 nm, which can absorb solar radiation efficiently on the earth. Because of the high melting point of Ti material and the symmetrical structure of this device, this perfect absorber has excellent thermal stability, polarization independence, and large incident-angle insensitivity. Hence, it can be used for solar cells, thermal emitters, and infrared detection with further investigation.


2018 ◽  
Vol 32 (04) ◽  
pp. 1850044 ◽  
Author(s):  
Bui Son Tung ◽  
Bui Xuan Khuyen ◽  
Young Joon Yoo ◽  
Joo Yull Rhee ◽  
Ki Won Kim ◽  
...  

We investigated a reversibly-propagational metamaterial perfect absorber (MPA) for X band using two separated identically-patterned copper layers, which were deposited on continuous dielectric FR-4 layers. By adjusting oblique incidence, two separated resonances are excited, then come close to each other and is finally merged to be a perfect absorption peak at 10.1 GHz. The nature of resonance is the quadrupole mode instead of the fundamental resonances in common MPAs. The mechanism of perfect absorption is the coupling of two quadrupole resonances at their superposition, leading to an enhancement of energy absorption. Finally, we numerically presented the capability of sensing thin resonant substance using the proposed MPA. The characteristic resonance of substance, which does not appear on the absorption spectrum at the limited thickness of bare substance layer, is detected with a great magnitude of signal by exploiting the absorption resonance of MPA. Our work provides another way to obtain the reversibly-propagational absorption by controlling the incident angle instead of the geometrical structure, and might be useful for the potential devices based on MPA such as detectors and sensors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sangjun Lee ◽  
Joohyung Song ◽  
Sangin Kim

AbstractNumerous device structures have been proposed for perfect absorption in monolayer graphene under single-sided illumination, all of which requires the critical coupling condition, i.e., the balance between the loss of graphene and the leakage rate of the device. However, due to the difficulty of the precise control of the quality of synthesized graphene and unwanted doping in graphene transferred to the substrate, the loss of graphene is rather unpredictable, so that the perfect absorption is quite difficult to achieve in practice. To solve this problem, we designed a novel perfect absorber structure with a loss adaptive leakage rate control function enabled by the quasi-bound states in the continuum (BIC) and numerically demonstrated its performance. Our designed device is based on a slab-waveguide grating supporting both the quasi-BIC and the guided-mode resonance (GMR); the quasi-BIC with an adjustable leakage rate controlled by an incident angle is responsible for absorption, while the GMR works as an internal mirror. Since the proposed device scheme can have an arbitrarily small leakage rate, it can be used to implement a perfect absorber for any kind of ultrathin absorbing media. Due to the simple structure avoiding an external reflector, the device is easy to fabricate.


2020 ◽  
pp. 56-58
Author(s):  
P.V. Gubarev ◽  
D.V. Glazunov ◽  
V.G. Ruban ◽  
A.S. Shapshal

The thermal calculation of the locomotive traction engine collector is proposed. The equations of the heat balance of its elements are obtained taking into account the cooling air. The calculation results and experimental data of thermal imaging control are presented. Keywords: traction electric motor, collector, thermal calculation, thermal imaging control. [email protected]


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 284
Author(s):  
Chen Han ◽  
Renbin Zhong ◽  
Zekun Liang ◽  
Long Yang ◽  
Zheng Fang ◽  
...  

This paper reports an independently tunable graphene-based metamaterial absorber (GMA) designed by etching two cascaded resonators with dissimilar sizes in the unit cell. Two perfect absorption peaks were obtained at 6.94 and 10.68 μm with simple single-layer metal-graphene metamaterials; the peaks show absorption values higher than 99%. The mechanism of absorption was analyzed theoretically. The independent tunability of the metamaterial absorber (MA) was realized by varying the Fermi level of graphene under a set of resonators. Furthermore, multi-band and wide-band absorption were observed by the proposed structure upon increasing the number of resonators and resizing them in the unit cell. The obtained results demonstrate the multipurpose performance of this type of absorber and indicate its potential application in diverse applications, such as solar energy harvesting and thermal absorbing.


Sign in / Sign up

Export Citation Format

Share Document