Structural, morphological, and optoelectrical characterization of Bi2S3 thin films grown by co-evaporation

2016 ◽  
Vol 30 (06) ◽  
pp. 1650066 ◽  
Author(s):  
F. Mesa ◽  
C. A. Arredondo ◽  
W. Vallejo

This work presents the results of synthesis and characterization of polycrystalline [Formula: see text]-type Bi2S3 thin films. The films were grown through a chemical reaction from co-evaporation of their precursor elements in a soda-lime glass substrate. The effect of the experimental conditions on the optical, morphological structural properties, the growth rate, and the electrical conductivity [Formula: see text] was studied through spectral transmittance, X-ray diffraction (XRD), atomic force microscopy (AFM) and [Formula: see text] versus [Formula: see text] measurements, respectively. The results showed that the films grow only in the orthorhombic Bi2S3 bismuthinite phase. It was also found that the Bi2S3 films present an energy band gap [Formula: see text] of about 1.38 eV. In addition to these results, the electrical conductivity of the Bi2S3 films was affected by both the transport of free carriers in extended states of the conduction band and for variable range hopping transport mechanisms, each one predominating in a different temperature range.

2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
William Vallejo ◽  
Carlos Diaz-Uribe ◽  
G. Gordillo

In this work, we fabricated system In(O,OH)S/i-ZnO/n+-ZnO to be used as potential optical window in thin films solar cells. i-ZnO/n+-ZnO thin films were synthesized by reactive evaporation (RE) method and In(O,OH)S thin films were synthesized by chemical bath deposition (CBD) method; all thin films were deposited on soda lime glass substrates. Thin films were characterized through X-ray diffraction (XRD), atomic force microscopy (AFM), and spectral transmittance measurements. Structural results indicated that both thin films were polycrystalline; furthermore, morphological results indicated that both thin films coated uniformly soda lime glass substrate; besides, optical characterization indicated that system had more than 80% of visible radiation transmittance.


2001 ◽  
Vol 16 (2) ◽  
pp. 394-399 ◽  
Author(s):  
S. Nishiwaki ◽  
T. Satoh ◽  
Y. Hashimoto ◽  
T. Negami ◽  
T. Wada

Cu(In,Ga)Se2(CIGS) thin films were prepared at substrate temperatures of 350 to 500 °C. The (In,Ga)2Se2 precursor layers were deposited on Mo coated soda-lime glass and then exposed to Cu and Se fluxes to form CIGS films. The surface composition was probed by a real-time composition monitoring method. The CIGS films were characterized by x-ray diffraction, energy dispersive x-ray spectroscopy, secondary ion mass spectroscopy, and atomic force microscopy. The transient formation of a Cu–Se phase with a high thermal emissivity was observed during the deposition of Cu and Se at a substrate temperature of 350 °C. Faster diffusion of In than Ga from the (In,Ga)2Se3 precursor to the newly formed CIGS layer was observed. A growth model for CIGS films during the deposition of Cu and Se onto (In,Ga)2Se3 precursor is proposed. A solar cell using a CIGS film prepared at about 350 °C showed an efficiency of 12.4%.


2002 ◽  
Vol 725 ◽  
Author(s):  
Salvador Borrós ◽  
M.Paz Diago ◽  
Joan Esteve ◽  
Núria Agulló

AbstractIn this work, thin films (thickness ∼ 0.5 μm) were obtained by plasma polymerization of pyrrole (Ppy) and thiophene (Pth) at 25-30 W and 0.1-0.2 mbar of pressure. Further doping with iodine was carried out to some of the Ppy and Pth films (Ppy/I2, Pth/I2) in order to enhance their electrical conductivity properties.Structural and morphological characterization of both Ppy and Pth as well as of Ppy/I2 and Pth/I2 was performed using Infrared Spectroscopy (IR), X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM).In the light of the information given by IR, XPS and AFM techniques, exhaustive and accurate description of both undoped and I2/doped Ppy and Pth films obtained by Plasma Polymerization is attained.


2021 ◽  
Vol 22 (12) ◽  
pp. 6472
Author(s):  
Beata Kaczmarek-Szczepańska ◽  
Marcin Wekwejt ◽  
Olha Mazur ◽  
Lidia Zasada ◽  
Anna Pałubicka ◽  
...  

This paper concerns the physicochemical properties of chitosan/phenolic acid thin films irradiated by ultraviolet radiation with wavelengths between 200 and 290 nm (UVC) light. We investigated the preparation and characterization of thin films based on chitosan (CTS) with tannic (TA), caffeic (CA) and ferulic acid (FA) addition as potential food-packaging materials. Such materials were then exposed to the UVC light (254 nm) for 1 and 2 h to perform the sterilization process. Different properties of thin films before and after irradiation were determined by various methods such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimeter (DSC), mechanical properties and by the surface free energy determination. Moreover, the antimicrobial activity of the films and their potential to reduce the risk of contamination was assessed. The results showed that the phenolic acid improving properties of chitosan-based films, short UVC radiation may be used as sterilization method for those films, and also that the addition of ferulic acid obtains effective antimicrobial activity, which have great benefit for food packing applications.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5182
Author(s):  
Krunoslav Juraić ◽  
Davor Gracin ◽  
Matija Čulo ◽  
Željko Rapljenović ◽  
Jasper Rikkert Plaisier ◽  
...  

Transparent conducting oxides (TCO) with high electrical conductivity and at the same time high transparency in the visible spectrum are an important class of materials widely used in many devices requiring a transparent contact such as light-emitting diodes, solar cells and display screens. Since the improvement of electrical conductivity usually leads to degradation of optical transparency, a fine-tuning sample preparation process and a better understanding of the correlation between structural and transport properties is necessary for optimizing the properties of TCO for use in such devices. Here we report a structural and magnetotransport study of tin oxide (SnO2), a well-known and commonly used TCO, prepared by a simple and relatively cheap Atmospheric Pressure Chemical Vapour Deposition (APCVD) method in the form of thin films deposited on soda-lime glass substrates. The thin films were deposited at two different temperatures (which were previously found to be close to optimum for our setup), 590 °C and 610 °C, and with (doped) or without (undoped) the addition of fluorine dopants. Scanning Electron Microscopy (SEM) and Grazing Incidence X-ray Diffraction (GIXRD) revealed the presence of inhomogeneity in the samples, on a bigger scale in form of grains (80–200 nm), and on a smaller scale in form of crystallites (10–25 nm). Charge carrier density and mobility extracted from DC resistivity and Hall effect measurements were in the ranges 1–3 × 1020 cm−3 and 10–20 cm2/Vs, which are typical values for SnO2 films, and show a negligible temperature dependence from room temperature down to −269 °C. Such behaviour is ascribed to grain boundary scattering, with the interior of the grains degenerately doped (i.e., the Fermi level is situated well above the conduction band minimum) and with negligible electrostatic barriers at the grain boundaries (due to high dopant concentration). The observed difference for factor 2 in mobility among the thin-film SnO2 samples most likely arises due to the difference in the preferred orientation of crystallites (texture coefficient).


2018 ◽  
Vol 96 (7) ◽  
pp. 804-809 ◽  
Author(s):  
Harun Güney ◽  
Demet İskenderoğlu

The undoped and 1%, 2%, and 3% Cd-doped MgO nanostructures were grown by SILAR method on the soda lime glass substrate. X-ray diffractometer (XRD), ultraviolet–visible spectrometer, scanning electron microscope, photoluminescence (PL), and X-ray photoelectron spectroscopy measurements were taken to investigate Cd doping effects on the structural, optical, and morphological properties of MgO nanostructures. XRD measurements show that the samples have cubic structure and planes of (200), (220) of MgO and (111), (200), and (220) of CdO. It was observed that band gaps increase with rising Cd doping rate in MgO thin film. The surface morphology of samples demonstrates that MgO nanostructures have been affected by the Cd doping. PL measurements show that undoped and Cd-doped MgO thin films can radiate in the visible emission region.


2007 ◽  
Vol 560 ◽  
pp. 41-46 ◽  
Author(s):  
Claus Guerra-Amaro ◽  
M. Hinojosa ◽  
E. Reyes-Melo ◽  
V. González

In the present work we discuss the self-affine properties of the fracture surfaces of sodalime glass obtained under quasi-static conditions. The fracture surfaces are generated using a threepoint bending system in normal room conditions and under high humidity conditions. The surfaces were recorded both by Scanning Electron Microscopy and Atomic Force Microscopy, and their selfaffine properties are characterized using the Variable Bandwidth method. For both conditions it is observed that the major part of the fracture surface is occupied by the mirror zone. On the other hand, the self-affine analysis reveals that for both conditions the roughness exponent has values centred at around 0.58 with moderate dispersion, in agreement with previous results. Our findings support the hypothesis of the existence of a characteristic roughness exponent for quasi-static fracture with a value that is significantly lower than the value of 0.8 reported for rapid fracture conditions.


Sign in / Sign up

Export Citation Format

Share Document