SURFACE PLASMON ENHANCED OPTICAL SECOND HARMONIC GENERATION IN ULTRA-THIN METALLIC FILMS

1999 ◽  
Vol 08 (04) ◽  
pp. 503-518 ◽  
Author(s):  
JUH-TZENG LUE ◽  
CHIA-SHY CHANG

Internal reflection of second-harmonic generations from silver films with thickness ranging from 5 nm to 50 nm are enhanced by the excitation of surface plasmons under Kretschmann configuration. Enhancement of the SHG was observed at a film thickness of 20 nm resulting from the field enhancement of granular structure. For thinner films, the surface reveals disconnected islands as inspected by the atomic force microscopy. The incident angular position to find the peak intensity and the change of linewidth of the SHG can almost satisfactorily be predicted by the theory based on surface scattering.

2006 ◽  
Vol 20 (02) ◽  
pp. 217-231 ◽  
Author(s):  
MUHAMMAD MAQBOOL ◽  
TAHIRZEB KHAN

Thin films of pure silver were deposited on glass substrate by thermal evaporation process at room temperature. Surface characterization of the films was performed using X-ray diffraction (XRD) and atomic force microscopy (AFM). Thickness of the films varied between 20 nm and 72.8 nm. XRD analysis provided a sharp peak at 38.75° from silver. These results indicated that the films deposited on glass substrates at room temperature are crystalline. Three-dimension and top view pictures of the films were obtained by AFM to study the grain size and its dependency on various factors. Average grain size increased with the thickness of the deposited films. A minimum grain size of 8 nm was obtained for 20 nm thick films, reaching 41.9 nm when the film size reaches 60 nm. Grain size was calculated from the information provided by the XRD spectrum and averaging method. We could not find any sequential variation in the grain size with the growth rate.


1996 ◽  
Vol 440 ◽  
Author(s):  
H. C. Wang ◽  
D. W. Cheong ◽  
J. Kumar ◽  
C. Sung ◽  
S. K. Tripathy

AbstractA soluble, asymmetrically substituted polydiacetylene, poly(BPOD), has been reported to form stable monolayers at the air-water interface by the Langmuir-Blodgett (LB) technique [2]. Preformed polydiacetylene has been deposited onto hydrophobic substrates as multilayers to form second order nonlinear optical thin films. Second harmonic generation was found to increase with the number of layers. From previous atomic force microscopy (AFM) studies backbone orientation along the dipping direction with an interchain spacing of about 5 A° was indicated [2].The film morphology and preferential molecular orientation of these LB films are further investigated by transmission electron microscopy (TEM). A specifically tailored sample preparation method for the ultrathin LB films was used. Multilayer films were deposited on hydrophobic collodion covered glass substrates for this purpose. Electron diffraction was employed to study the crystalline organization of mono and multilayers of LB films as well as cast films.


1998 ◽  
Vol 05 (01) ◽  
pp. 387-392 ◽  
Author(s):  
D. Abriou ◽  
D. Gagnot ◽  
J. Jupille ◽  
F. Creuzet

The growth mode of silver films deposited at room temperature on TiO 2(110) surfaces has been examined by means of atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) in ultrahigh vacuum (UHV) conditions, On clean vacancy-free TiO 2(110) surfaces, 0.1-nm-thick (on average) Ag deposits form a two-dimensional (2D) layer. When the thickness of the silver overlayer is increased, 3D clusters are shown to appear while the 2D film is preserved, furthermore, the influence of surface oxygen vacancies on the growth of Ag/TiO 2(110) is evidenced by well-characterized differences in the morphology of 9-nm-thick silver deposits.


2015 ◽  
Vol 1726 ◽  
Author(s):  
Patrizia Minutolo ◽  
Mario Commodo ◽  
Gianluigi De Falco ◽  
Rosanna Larciprete ◽  
Andrea D'Anna

ABSTRACTIn this work we produce atomically thin carbon nanostructures which have a disk-like shape when deposited on a substrate. These nanostructures have intermediate characteristics between a graphene island and a molecular compound and have the potentiality to be used either as they are, or to become building blocks for functional materials or to be manipulated and engineered into composite layered structures.The carbon nanostructures are produced in a premixed ethylene/air flame with a slight excess of fuel with respect to the stoichiometric value. The size distribution of the produced compounds in aerosol phase has been measured on line by means of a differential mobility analyzer (DMA) and topographic images of the structures deposited on mica disks were obtained by Atomic Force Microscopy. Raman spectroscopy and XPS have been used to characterize their structure and the electronic and optical properties were obtained combining on-line photoionization measurements with Cyclic Voltammetry, light absorption and photoluminescence.When deposited on the mica substrate the carbon compounds assume the shape of an atomically thin disk with in plane diameter of about 20 nm. Carbon nano-disks consist of a network of small aromatic island with in plane length, La, of about 1 nm. Raman spectra evidence a significant amount of disorder which is in a large part due to the quantum confinement in the aromatic islands. Nano-disks contain small percentage of sp3 and the O/C ratio is lower than 6%. They furthermore present interesting UV and visible photoluminescence properties.


1994 ◽  
Vol 336 ◽  
Author(s):  
H.N. Wanka ◽  
E. Lotter ◽  
M.B. Schubert

ABSTRACTThe chemical reactions at the surface of transparent conductive oxides (SnO2, ITO and ZnO) have been studied in silane and hydrogen plasmas by in-situ ellipsometry and by SIMS as well as XPS depth profiling. SIMS and XPS of the interface reveal an increasing amount of metallic phases upon lowering a-Si:H growth rates (controlled by plasma power), indicating that the ion and radical impact is more than compensated by protecting the surface by a rapidly growing a-Si:H film. Hence, optical transmission of TCO films as well as the efficiency of solar cells can be improved if the first few nanometers of the p-layer are grown at higher rates. Comparing a-Si:H deposition on top of different TCOs, reduction effects on ITO and SnO2 have been detected whereas ZnO appeared to be chemically stable. Therefore an additional shielding of the SnO2 surface by a thin ZnO layer has been investigated in greater detail. Small amounts of H are detected close to the ZnO surface by SIMS after hydrogen plasma treatment, but no significant changes occur to the optical and electrical properties. In-situ ellipsometry indicates that a ZnO layer as thin as 20 nm completely protects SnO2 from being reduced to metallic phases. This provides for shielding of textured TCOs, and hence rising solar cell efficiencies, too. Regarding light trapping efficiency we additionally investigated the smoothing of initial TCO texture when growing a-Si:H on top by combining atomic force microscopy and spectroscopie ellipsometry.


2012 ◽  
Vol 584 ◽  
pp. 8-12 ◽  
Author(s):  
Balakrishna Kolli ◽  
Sarada P. Mishra ◽  
Mukesh P. Joshi ◽  
S. Raj Mohan ◽  
T.S. Dhami ◽  
...  

Click chemistry is used for synthesizing polymers for second order NLO study. The molecular weights found by gel-permeation chromatography (GPC), were in the range of 7000-55000 g/mol. Differential scanning calorimetry shows glass transition temperature (Tg) above 120 oC. From electronic spectra order parameter of the poled films were calculated to be 0.1-0.5. The change in surface morphology after poling was checked by atomic force microscopy. By using a pulsed Nd:YAG laser (1064nm), the second harmonic generation (SHG) intensity was measured. The SHG intensity was also studied as a function of against temperature and time respectively.


1999 ◽  
Vol 14 (4) ◽  
pp. 1286-1294 ◽  
Author(s):  
W. Brückner ◽  
W. Pitschke ◽  
S. Baunack ◽  
J. Thomas

This paper focuses on understanding stress development in CuNi42Mn1 thin films during annealing in Ar. In addition to stress-temperature measurements, resistance-temperature investigations and chemical and microstructural characterization by Auger electron spectroscopy, scanning and transmission electron microscopy, x-ray diffraction, and atomic force microscopy were also carried out. The films are polycrystalline with a grain size of 20 nm up to 450 °C. To explain the stress evolution above 120 °C, atomic rearrangement (excess-vacancy annihilation, grain-boundary relaxation, and shrinkage of grain-boundary voids) and oxidation were considered. Grain-boundary relaxation was found to be the dominating process up to 250–300 °C. A sharp transition from compressive to tensile stress between 300 and 380 °C is explained by the formation of a NiO surface layer due to reaction with the remaining oxygen in the Ar atmosphere. This oxidation is masking the inherent structural relaxation above 300 °C.


1995 ◽  
Vol 382 ◽  
Author(s):  
D. W. Cheong ◽  
V. Shivshankar ◽  
H. C. Wang ◽  
C. M. Sung ◽  
J. Kumar ◽  
...  

ABSTRACTNonlinear optical (NLO) ultrathin films of a preforrned asymmetric polydiacetylene have been fabricated by Z-type Langmuir-Blodgett film deposition from the air-water interface. Induced in-plane orientation of the polydiacetylene backbone on the substrates has been confirmed by UV/Vis, FT-IR dichroism, and degenerate four wave mixing (DFWM) studies. All the measurements indicate that the backbone is prefe rentially oriented along the dipping direction. Second harmonic generation study suggests that the LB multilayers form an asymmetric structure (Z-type) due to the accumulation of 2-dimensional ordered monolayer and the dominant induced second order polarization is in the plane of the film. The film morphology and molecular orientation have been investigated by atomic force microscopy (AFM).


2001 ◽  
Vol 687 ◽  
Author(s):  
D.F. Bahr ◽  
K.R. Bruce ◽  
B.W. Olson ◽  
L.M. Eakins ◽  
C.D. Richards ◽  
...  

AbstractA piezoelectric thin film MEMS device for generating power from a novel heat engine which approaches a Carnot cycle has been developed. The structure of the underlying electrode and PZT thin film generator has been optimized for increased adhesion. Atomic force microscopy was used to track electrode grain size and roughness; generating grain sizes of approximately 100 and 200 nm in diameter and a roughness of about 14-20 nm provide substantial improvements in film adhesion over systems with smaller grains and smoother surfaces. This has led to the ability to operate the engine at frequencies between 10 and 1500 Hz. The system of interest (a fluid filled cavity sealed by a micromachined silicon membrane and the PZT film) shows increased deflections for a given pressure applied to the membrane at frequencies where the system resonates. By operating the system dynamically, it is possible to generate more than 2 V from a single generator structure.


2006 ◽  
Vol 918 ◽  
Author(s):  
Heng Li ◽  
T. Ju ◽  
T. Herring ◽  
P. C. Taylor ◽  
D. L. Williamson ◽  
...  

AbstractThe optical and structural properties of amorphous sputtered films of Ge2Sb2Te5 depend strongly on the preparation conditions. Films grown at higher growth rates exhibit greater local strains as indicated by the slope of the optical absorption in the exponential “band-tail” region, but these films also incorporate smaller densities of oxygen impurities. At slower growth rates the band-tail slopes are sharper (smaller local strains) but there is greater oxygen incorporation. We will discuss several experiments that suggest that the local strain relief in the films grown at slower growth rates is due to a greater ability of the atoms to rearrange on the growing surface and not to increased oxygen incorporation. Small angle x-ray scattering experiments show that the films exhibit small elliptical “voids” with long axes perpendicular to the growing surface. The approximate dimensions of these voids are 3 × 20 nm. These films can be switched optically with little change in surface topography as measured by atomic force microscopy. Electron spin resonance measurements indicate that paramagnetic defects exist in some films but are either absent or below the detection limit (~ 1018 cm-3) in most films. The implications of these results for the switching mechanisms will be discussed.


Sign in / Sign up

Export Citation Format

Share Document