scholarly journals ANALYTICAL STUDY OF ELECTRO-OSMOSIS MODULATED CAPILLARY PERISTALTIC HEMODYNAMICS

2017 ◽  
Vol 17 (03) ◽  
pp. 1750052 ◽  
Author(s):  
DHARMENDRA TRIPATHI ◽  
SHASHI BHUSHAN ◽  
O. ANWAR BÉG

A mathematical model is developed to analyze electro-kinetic effects on unsteady peristaltic transport of blood in cylindrical vessels of finite length. The Newtonian viscous model is adopted. The analysis is restricted under Debye–Hückel linearization (i.e., wall zeta potential [Formula: see text] 25[Formula: see text]mV) is sufficiently small). The transformed, nondimensional conservation equations are derived via lubrication theory and long wavelength and the resulting linearized boundary value problem is solved exactly. The case of a thin electric double layer (i.e., where only slip electro-osmotic velocity considered) is retrieved as a particular case of the present model. The response in pumping characteristics (axial velocity, pressure gradient or difference, volumetric flow rate, local wall shear stress) to the influence of electro-osmotic effect (inverse Debye length) and Helmholtz–Smoluchowski velocity is elaborated in detail. Visualization of trapping phenomenon is also included and the bolus dynamics evolution with electro-kinetic effects examined. A comparative study of train wave propagation and single wave propagation is presented under the effects of thickness of EDL and external electric field. The study is relevant to electrophoresis in haemotology, electrohydrodynamic therapy and biomimetic electro-osmotic pumps.

Lubricants ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 48
Author(s):  
Sufian Munawar

Shear stress at the cilia wall is considered as an imperative factor that affects the efficiency of cilia beatings as it describes the momentum transfer between the fluid and the cilia. We consider a visco-inelastic Prandtl fluid in a ciliated channel under electro-osmotic pumping and the slippage effect at cilia surface. Cilia beating is responsible for the stimulation of the flow in the channel. Evenly distributed cilia tend to move in a coordinated rhythm to mobilize propulsive metachronal waves along the channel surface by achieving elliptic trajectory movements in the flow direction. After using lubrication approximations, the governing equations are solved by the perturbation method. The pressure rise per metachronal wavelength is obtained by numerically integrating the expression. The effects of the physical parameters of interest on various flow quantities, such as velocity, pressure gradient, pressure rise, stream function, and shear stress at the ciliated wall, are discussed through graphs. The analysis reveals that the axial velocity is enhanced by escalating the Helmholtz–Smoluchowski velocity and the electro-osmosis effects near the elastic wall. The shear stress at the ciliated boundary elevates with an increase in the cilia length and the eccentricity of the cilia structure.


2006 ◽  
Vol 48 (10) ◽  
pp. 1940-1943 ◽  
Author(s):  
Shinya Watanabe ◽  
Youichi Kakuta ◽  
Osamu Hashimoto

Author(s):  
Pulkit Kumar ◽  
Moumita Mahanty ◽  
Abhishek Kumar Singh ◽  
Amares Chattopadhyay

2018 ◽  
Vol 7 (2) ◽  
pp. 83-90 ◽  
Author(s):  
Saima Noreen

Abstract This research is devoted to the peristaltic flow of Eyring-Powell nanofluid in an asymmetric channel. Robins-type (convective) boundary conditions are employed in the presence of mixed convection and magnetic field. The basic equations of Eyring-Powell nanofluid are modeled in wave frame of reference. Long wavelength and low Reynolds number approach is utilized. Numerical solution of the governing problem is computed and analyzed. The effects of various parameters of interest on the velocity, pressure rise, concentration and temperature are discussed and illustrated graphically. Brownian motion parameter and thermophoresis parameter facilitates the increase in temperature of fluid. Biot numbers serve to reduce the temperature at channel walls.


Author(s):  
U. P. Singh ◽  
Amit Medhavi ◽  
R. S. Gupta ◽  
Siddharth Shankar Bhatt

The present investigation is concerned with the problem of heat transfer and peristaltic flow of non-Newtonian fluid using Rabinowitsch fluid model through a channel under long wavelength and low Reynolds number approximation. Expressions for velocity, pressure gradient, pressure rise, friction force and temperature have been obtained. The effect of different parameters on velocity, pressure gradient, pressure rise, streamlines, friction force and temperature have been discussed through graphs.


2020 ◽  
pp. 854-869
Author(s):  
Rabiha S. Kareem ◽  
Ahmed M. Abdulhadi

In this paper, we study the impacts of variable viscosity , heat and mass transfer on magneto hydrodynamic (MHD) peristaltic flow in a asymmetric tapered inclined channel with porous medium . The viscosity is considered as a function of temperature. The slip conditions at the walls were taken into consideration. SmallReynolds number and the long wavelength approximations were used to simplify the governing equations. A comparison between the two velocities in cases of slip and no-slip was plotted. It was observed that the behavior of the velocity differed in the two applied models for some parameters. Mathematica software was used to estimate the exact solutions of temperature and concentration profiles. The resolution of the equations to the momentum was based on the perturbation method to find the axial velocity, pressure gradient and trapping phenomenon. The influences of the various flow parameters of the problem on these distributions were debated and proved graphically by figures.


2019 ◽  
Vol 9 (20) ◽  
pp. 4359 ◽  
Author(s):  
Saima Noreen ◽  
Sadia Waheed ◽  
Abid Hussanan ◽  
Dianchen Lu

This article explores the heat and transport characteristics of electroosmotic flow augmented with peristaltic transport of incompressible Carreau fluid in a wavy microchannel. In order to determine the energy distribution, viscous dissipation is reckoned. Debye Hückel linearization and long wavelength assumptions are adopted. Resulting non-linear problem is analytically solved to examine the distribution and variation in velocity, temperature and volumetric flow rate within the Carreau fluid flow pattern through perturbation technique. This model is also suitable for a wide range of biological microfluidic applications and variation in velocity, temperature and volumetric flow rate within the Carreau fluid flow pattern.


Author(s):  
Vasiliki Stratigaki ◽  
Peter Troch ◽  
Leen Baelus ◽  
Yannick Keppens

The increasing energy demand, the need to reduce greenhouse gas emissions and the shrinking reserves of fossil fuels have all enhanced the interest in sustainable and renewable energy sources, including wave energy. Many concepts for wave power conversion have been invented. In order to extract a considerable amount of wave power, single Wave Energy Converters (abbreviated as WECs) will have to be arranged in arrays or ‘farms’ using a particular geometrical layout, comprising large numbers of devices. As a result of the interaction between the WECs within a farm, the overall power absorption is affected. In general, the incident waves are partly reflected, transmitted and absorbed by a single WEC. Also, the wave height behind a large farm of WECs is reduced and this reduction may influence neighbouring farms, other users in the sea or even the coastline (wake effects of a WEC farm). The numerical wave propagation model MILDwave has been recently used to study wake effects and energy absorption of farms of WECs, though without taking into account wave regeneration by wind in the lee of the WEC-farm which can be significant in large distances downwave the WECs. In this paper, the implementation of wave growth due to wind in the hyperbolic mild-slope equations of the wave propagation model, MILDwave is described. Several formulations for the energy input from wind found in literature are considered and implemented. The performance of these formulations in MILDwave is investigated and validated. The modified model MILDwave is then applied for the investigation of the influence of the wind on the wakes in the lee of a farm of wave energy converters.


Sign in / Sign up

Export Citation Format

Share Document