Fabrication of Superhydrophobic Aluminum Surfaces Using Modified Nanoparticles and Ionizable Surfactants

2021 ◽  
pp. 2150035
Author(s):  
Bahram Abedi Ravan ◽  
Akbar Cheraghi

In this study, plates of aluminum are made superhydrophobic via wet etching followed by deposition of nanostructure and microstructure. Etched surfaces are coated with modified nanoalumina using an ionizable surfactant. Key parameters governing the hydrophobicity such as type of the etching solvent, type of the surfactant, etching time, nanoparticle size distribution, surfactant concentration and annealing temperature are investigated. Infrared spectroscopy (IR), dynamic light scattering (DLS), scanning electron microscopy (SEM) and water contact angle (WCA) measurements are used to characterize the treated surfaces. A WCA greater than 150∘ is obtained and in order to estimate the efficiency and mechanical durability of the coatings the samples are tested in emulated sea-water. Water jet tests prove the mechanical stability of the samples. Our fabrication method results in good hydrophobicity and self-cleaning behavior of the Al surface and the obtained results may be useful for industrial applications.

2012 ◽  
Vol 529 ◽  
pp. 388-393 ◽  
Author(s):  
Hao Li ◽  
Yong You Geng ◽  
Yi Qun Wu

The selective wet etching characteristics of AgInSbTe film as a new thermal lithography material were studied with ammonium sulfide solution as etchant. Influences of vacuum-annealing temperature, etchant concentration and wet etching time on selective wet etching characteristics of the amorphous and crystalline AgInSbTe films were investigated. Experimental results indicated that the etching rate of AgInSbTe film increased with the enhancement of crystallization extent, and the etching rate of crystalline state AgInSbTe film annealed at 300°C was 35nm/min in 17wt% ammonium sulfide solution, about 17.5 times as high as that of the amorphous state. Moreover, a good surface morphology of AgInSbTe film with roughness of less than 3 nm was attained in the area of 10×10 μm2 after wet-etching. The wet etching selectivity of the AgInSbTe film was strongly influenced by the annealing temperature and the etchant concentration.


2021 ◽  
Vol 9 (2) ◽  
pp. 336
Author(s):  
Laura Matarredona ◽  
Mónica Camacho ◽  
Basilio Zafrilla ◽  
Gloria Bravo-Barrales ◽  
Julia Esclapez ◽  
...  

Haloarchaea can survive and thrive under exposure to a wide range of extreme environmental factors, which represents a potential interest to biotechnology. Growth responses to different stressful conditions were examined in the haloarchaeon Haloferax mediterranei R4. It has been demonstrated that this halophilic archaeon is able to grow between 10 and 32.5% (w/v) of sea water, at 32–52 °C, although it is expected to grow in temperatures lower than 32 °C, and between 5.75 and 8.75 of pH. Moreover, it can also grow under high metal concentrations (nickel, lithium, cobalt, arsenic), which are toxic to most living beings, making it a promising candidate for future biotechnological purposes and industrial applications. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis quantified the intracellular ion concentrations of these four metals in Hfx. mediterranei, concluding that this haloarchaeon can accumulate Li+, Co2+, As5+, and Ni2+ within the cell. This paper is the first report on Hfx. mediterranei in which multiple stress conditions have been studied to explore the mechanism of stress resistance. It constitutes the most detailed study in Haloarchaea, and, as a consequence, new biotechnological and industrial applications have emerged.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyed Mehran Mirmohammadi ◽  
Sasha Hoshian ◽  
Ville P. Jokinen ◽  
Sami Franssila

AbstractA polydimethylsiloxane (PDMS)/Cu superhydrophobic composite material is fabricated by wet etching, electroless plating, and polymer casting. The surface topography of the material emerges from hierarchical micro/nanoscale structures of etched aluminum, which are rigorously copied by plated copper. The resulting material is superhydrophobic (contact angle > 170°, sliding angle < 7° with 7 µL droplets), electrically conductive, elastic and wear resistant. The mechanical durability of both the superhydrophobicity and the metallic conductivity are the key advantages of this material. The material is robust against mechanical abrasion (1000 cycles): the contact angles were only marginally lowered, the sliding angles remained below 10°, and the material retained its superhydrophobicity. The resistivity varied from 0.7 × 10–5 Ωm (virgin) to 5 × 10–5 Ωm (1000 abrasion cycles) and 30 × 10–5 Ωm (3000 abrasion cycles). The material also underwent 10,000 cycles of stretching and bending, which led to only minor changes in superhydrophobicity and the resistivity remained below 90 × 10–5 Ωm.


2011 ◽  
Vol 364 ◽  
pp. 232-237 ◽  
Author(s):  
S.Y. Lim ◽  
M.M. Norani

Catalyst plays a crucial role in determining the characteristics of carbon nanotubes (CNTs) produced by using thermal catalytic chemical vapor deposition (CVD). It is essential to investigate how the catalyst preparation affects the characteristics of CNTs because certain application demands specific size for optimum performance. This study reports the effect of the types of catalyst and the duration of the catalyst pre-treatment (wet etching time, dry etching time and ball milling) on the diameter of CNTs. The synthesized CNTs samples were characterized by scanning and transmission electron microscopy and Raman spectroscopy. Wet etching (2M hydrofluoric acid) time was varied from 1 to 2.5 hrs and the diameter range was found to be in the range of 23 to 52 nm. The diameter range for CNTs produced for 3 hrs and 5 hrs of dry etching treatment (with ammonia gas) are 38 to 51 nm and 23 to 48 nm, respectively. The diameter size of CNTs produced using Ni (14 to 25 nm) was found to be smaller than Fe (38 to 51 nm). There is a significant decrease in the diameter of CNTs by prolonging the wet etching period. Shorter and curly shaped CNTs can also be obtained by using Ni as the catalyst. Keywords: chemical vapor deposition, carbon nanotubes, catalyst pretreatment


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 687 ◽  
Author(s):  
Chongchong Li ◽  
Ruina Ma ◽  
An Du ◽  
Yongzhe Fan ◽  
Xue Zhao ◽  
...  

Super-hydrophobic film with hierarchical micro/nano structures was prepared by galvanic replacement reaction process on the surface of galvanized steel. The effects of the etching time and copper nitrate concentration on the wetting property of the as-prepared surfaces were studied. Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electrochemical technique were employed to characterize the surface morphology, chemical composition, and corrosion resistance. The stability and self-cleaning property of the as-fabricated super-hydrophobic film were also evaluated. The super-hydrophobic film can be obtained within 3 min and possesses a water contact angle of 164.3° ± 2°. Potentiodynamic polarization measurements indicated that the super-hydrophobic film greatly improved the corrosion resistance of the galvanized steel in 3.5 wt % NaCl aqueous solution. The highest inhibition efficiency was estimated to be 96.6%. The obtained super-hydrophobic film showed good stability and self-cleaning property.


Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 677 ◽  
Author(s):  
Zhengyong Huang ◽  
Wenjie Xu ◽  
Yu Wang ◽  
Haohuan Wang ◽  
Ruiqi Zhang ◽  
...  

In this study, we develop a facial one-step approach to prepare durable super-hydrophobic coatings on glass surfaces. The hydrophobic characteristics, corrosive liquid resistance, and mechanical durability of the super-hydrophobic surface are presented. The as-prepared super-hydrophobic surface exhibits a water contact angle (WCA) of 157.2° and contact angle hysteresis of 2.3°. Mico/nano hierarchical structures and elements of silicon and fluorine is observed on super-hydrophobic surfaces. The adhesion strength and hardness of the surface are determined to be 1st level and 4H, respectively. The coating is, thus, capable of maintaining super-hydrophobic state after sand grinding with a load of 200 g and wear distances of 700 mm. The rough surface retained after severe mechanical abrasion observed by atomic force microscope (AFM) microscopically proves the durable origin of the super-hydrophobic coating. Results demonstrate the feasibility of production of the durable super-hydrophobic coating via enhancing its adhesion strength and surface hardness.


2019 ◽  
Vol 813 ◽  
pp. 37-42
Author(s):  
Amani Khaskhoussi ◽  
Luigi Calabrese ◽  
Edoardo Proverbio

Three different methods were used to obtain nature-inspired superhydrophobic surfaces on aluminum alloys: short-term treatment with boiling water, HF/HCl and HNO3/HCl concentrated solution etching. Afterwards a thin octadecylsilane film was deposited on all pre-treated surfaces. The surface morphology analysis showed that each method allow to obtain a specific dual nano/micro-structure. The corresponding water contact angles ranged from 160° to nearly 180°. The adhesion force between the water droplets and superhydrophobic surfaces were evaluated. The specimen etched with HF/HCl acid mixture solution showed the lowest adhesion. However, the boiling water treatment sample was characterized by the highest adhesion. Furthermore, the relationship between hydrophobic behavior and surface morphology was discussed compressively. In addition, the electrochemical measurements show that the different superhydrophobic surfaces have an excellent anti-corrosion performance evidencing promising results suitable to obtain large-scale nature-inspired superhydrophobic surfaces for several industrial applications.


Author(s):  
Ying Song ◽  
Rahul Premachandran Nair ◽  
Min Zou

This paper reports fabrication and understanding of hydrophobic silicon nano-textured surfaces produced by aluminum-induced crystallization (AIC) of amorphous silicon (a-Si). In this study, the effects of annealing temperature and duration on surface topography and wetting property were investigated. The results showed that surface wetting property directly correlates with the percentage area coverage by the nano-textures, which in turn was determined by the annealing conditions. The largest water contact angle (WCA) obtained from this research is 137°.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1057
Author(s):  
Xizhao Lu ◽  
Lei Kang ◽  
Binggong Yan ◽  
Tingping Lei ◽  
Gaofeng Zheng ◽  
...  

To fabricate an industrial and highly efficient super-hydrophobic brass surface, annealed H59 brass samples have here been textured by using a 1064 nm wavelength nanosecond fiber laser. The effects of different laser parameters (such as laser fluence, scanning speed, and repetition frequency), on the translation to super-hydrophobic surfaces, have been of special interest to study. As a result of these studies, hydrophobic properties, with larger water contact angles (WCA), were observed to appear faster than for samples that had not been heat-treated (after an evolution time of 4 days). This wettability transition, as well as the evolution of surface texture and nanograins, were caused by thermal annealing treatments, in combination with laser texturing. At first, the H59 brass samples were annealed in a Muffle furnace at temperatures of 350 °C, 600 °C, and 800 °C. As a result of these treatments, there were rapid formations of coarse surface morphologies, containing particles of both micro/nano-level dimensions, as well as enlarged distances between the laser-induced grooves. A large number of nanograins were formed on the brass metal surfaces, onto which an increased number of exceedingly small nanoparticles were attached. This combination of fine nanoparticles, with a scattered distribution of nanograins, created a hierarchic Lotus leaf-like morphology containing both micro-and nanostructured material (i.e., micro/nanostructured material). Furthermore, the distances between the nano-clusters and the size of nano-grains were observed, analyzed, and strongly coupled to the wettability transition time. Hence, the formation and evolution of functional groups on the brass surfaces were influenced by the micro/nanostructure formations on the surfaces. As a direct consequence, the surface energies became reduced, which affected the speed of the wettability transition—which became enhanced. The micro/nanostructures on the H59 brass surfaces were analyzed by using Field Emission Scanning Electron Microscopy (FESEM). The chemical compositions of these surfaces were characterized by using an Energy Dispersive Analysis System (EDS). In addition to the wettability, the surface energy was thereby analyzed with respect to the different surface micro/nanostructures as well as to the roughness characteristics. This study has provided a facile method (with an experimental proof thereof) by which it is possible to construct textured H59 brass surfaces with tunable wetting behaviors. It is also expected that these results will effectively extend the industrial applications of brass material.


Author(s):  
Mukesh Kumar Meena ◽  
Balraj Krishnan Tudu ◽  
Aditya Kumar ◽  
Bharat Bhushan

In this study, a superhydrophobic coating on steel surface has been developed with polyurethane, SiO 2 nanoparticles and hexadecyltrimethoxysilane by using a spin-coating technique. Characterization of the coated steel surface was done by using the contact angle measurement technique, scanning electron microscopy and Fourier transform infrared spectroscopy. With a water tilt angle of 4° ± 2° and static contact angle of 165° ± 5°, the coated surface shows a superhydrophobic and self-cleaning nature. Chemical, thermal, mechanical stability tests and droplet dynamic studies were done to evaluate performance of the coating. Excellent self-cleaning, anti-fogging and anti-corrosion properties of coated steel surfaces make them ideal for industrial applications. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 3)’.


Sign in / Sign up

Export Citation Format

Share Document