scholarly journals A preliminary strategy for screening the combination of active components based on Bu–Shen–Yi–Qi Decoction for bronchial asthma

2019 ◽  
Vol 02 (03) ◽  
pp. 135-138
Author(s):  
Chen Yan ◽  
Qingli Luo ◽  
Cheng Ma ◽  
Jiaqi Liu ◽  
Jingcheng Dong

Objective: The anti-asthma herbal medicine Bu–Shen–Yi–Qi Decoction (BSYQ Decoction), a combination of three traditional Chinese medicine herbs developed in our lab, has shown demonstrated efficacy in Ovalbumin (OVA)-induced acute bronchial asthma. However, the obscure substances, multiple potential targets and the unclear molecular mechanisms are obstacles to control drug quality, stability and standardization. Multi-component formulae with a clear pharmacodynamic material and specific mechanism are an innovation worth exploring. They may also partly reserve a potential synergistic and additive effect compared with single components extracted from traditional Chinese herbs. This study was designed to select three standard multi-component formulae of the combination of effective components preliminarily based on four effective components [total flavonoids of Herba Epimedii ([Formula: see text]; Astragalus polysaccharide ([Formula: see text]; Astragaloside ([Formula: see text]; and Catalpol ([Formula: see text]] in BSYQ Decoction. Methods: OVA-induced asthmatic murine models were established. A uniform design was applied to select 10 proportions from four target components, and 3 formulae which showed best effect aimed at IFN-[Formula: see text], IL-4 and IgE in the serum respectively were screened based on stepwise regression analysis. Results: According to the regression analysis, Formula I ([Formula: see text]:[Formula: see text]:[Formula: see text]:6:29), Formula II ([Formula: see text]:[Formula: see text]:[Formula: see text]:8:2) and Formula III ([Formula: see text]:[Formula: see text]:[Formula: see text]:[Formula: see text]:50:8:2) are the three potential proper ratios for the new multi-component formula aimed at serum IFN-[Formula: see text], IL-4 and IgE in OVA-induced asthma mice, respectively. Conclusion: Three multi-component formulae derived from BSYQ Decoction could exert anti-inflammatory effect against OVA-induced asthma, which might provide evidences and lay foundations for further study of standard modern Chinese drug for treating asthma based on BSYQ Decoction.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Wenhao Niu ◽  
Feng Wu ◽  
Haiming Cui ◽  
Wenyue Cao ◽  
YuChieh Chao ◽  
...  

“Three formulas and three medicines,” which include Jinhua Qinggan granule, Lianhua Qingwen capsule/granule, Xuebijing injection, Qingfei Paidu decoction, HuaShiBaiDu formula, and XuanFeiBaiDu granule, have been proven to be effective in curbing coronavirus disease 2019 (COVID-19), according to the State Administration of Traditional Chinese Medicine. The aims of this study were to identify the active components of “Three formulas and three medicines” that can be used to treat COVID-19, determine their mechanism of action via angiotensin-converting enzyme 2 (ACE2) by integrating network pharmacological approaches, and confirm the most effective components for COVID-19 treatment or prevention. We investigated all the compounds present in the aforementioned herbal ingredients. Compounds that could downregulate the transcription factors (TFs) of ACE2 and upregulate miRNAs of ACE2 were screened via a network pharmacology approach. Hepatocyte nuclear factor 4 alpha (HNF4A), peroxisome proliferator-activated receptor gamma (PPARG), hsa-miR-2113, and hsa-miR-421 were found to regulate ACE2. Several compounds, such as quercetin, decreased ACE2 expression by regulating the aforementioned TFs or miRNAs. After comparison with the compounds present in Glycyrrhiza Radix et Rhizoma, quercetin, glabridin, and gallic acid present in the herbal formulas and medicines were found to alter ACE2 expression. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to search for possible molecular mechanisms of these compounds. In conclusion, traditional Chinese medicine (TCM) plays a pivotal role in the prevention and treatment of COVID-19. Quercetin, glabridin, and gallic acid, the active components of recommended TCM formulas and medicines, can inhibit COVID-19 by downregulating ACE2.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Biting Wang ◽  
Zengrui Wu ◽  
Weihua Li ◽  
Guixia Liu ◽  
Yun Tang

Abstract Background The traditional Chinese medicine Huangqi decoction (HQD) consists of Radix Astragali and Radix Glycyrrhizae in a ratio of 6: 1, which has been used for the treatment of liver fibrosis. In this study, we tried to elucidate its action of mechanism (MoA) via a combination of metabolomics data, network pharmacology and molecular docking methods. Methods Firstly, we collected prototype components and metabolic products after administration of HQD from a publication. With known and predicted targets, compound-target interactions were obtained. Then, the global compound-liver fibrosis target bipartite network and the HQD-liver fibrosis protein–protein interaction network were constructed, separately. KEGG pathway analysis was applied to further understand the mechanisms related to the target proteins of HQD. Additionally, molecular docking simulation was performed to determine the binding efficiency of compounds with targets. Finally, considering the concentrations of prototype compounds and metabolites of HQD, the critical compound-liver fibrosis target bipartite network was constructed. Results 68 compounds including 17 prototype components and 51 metabolic products were collected. 540 compound-target interactions were obtained between the 68 compounds and 95 targets. Combining network analysis, molecular docking and concentration of compounds, our final results demonstrated that eight compounds (three prototype compounds and five metabolites) and eight targets (CDK1, MMP9, PPARD, PPARG, PTGS2, SERPINE1, TP53, and HIF1A) might contribute to the effects of HQD on liver fibrosis. These interactions would maintain the balance of ECM, reduce liver damage, inhibit hepatocyte apoptosis, and alleviate liver inflammation through five signaling pathways including p53, PPAR, HIF-1, IL-17, and TNF signaling pathway. Conclusions This study provides a new way to understand the MoA of HQD on liver fibrosis by considering the concentrations of components and metabolites, which might be a model for investigation of MoA of other Chinese herbs.


2021 ◽  
Author(s):  
Xiaojian Wang ◽  
Rui Wang ◽  
Ting Xu ◽  
Hongting Jin ◽  
Peijian Tong ◽  
...  

Abstract Background The lesion of marrow is a crucial factor in orthopedic diseases, which is recognized by orthopedics-traumatology expert from "Zhe-School of Chinese Medicine". The Chinese herbs of regulating marrow has been widely used to treat osteonecrosis of the femoral head (ONFH) in China, while the interaction mechanisms were still elucidated. Thus, we conducted this study to explore the underlying mechanism of the five highest-frequency Chinese herbs of regulating marrow(HF-CHRM) in the treatment of ONFH with the aid of network pharmacology(NP) and molecular docking(MD). Methods The active components and potential targets of HF-CHRM were obtained through several online databases, such as Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), UniProt database. The gene targets related to ONFH were collected with the help of the OMIM and GeneCards disease-related databases. The "drug- component-target-disease" network and protein-protein interaction(PPI) network of the drug and disease intersecting targets were constructed by using Cytoscape software and the STRING database. R software was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The MD of critical components and targets was carried out using Autodock Vina and Pymol to validate the binding affinity. Results A total of 54 active components, 1074 drug targets and 195 gene targets were obtained. There were 1219 ONFH related targets. 39 drug and disease intersection targets(representative genes: IL6, TP53, VEGFA, ESR1, IL1B) were obtained and considered potential therapeutic targets. 1619 items were obtained by the GO enrichment analysis, including 1517 biological processes, 10 cellular components and 92 molecular functions, which is mainly related to angiogenesis, bone and lipid metabolism and inflammatory reaction. The KEGG pathway enrichment analysis revealed 119 pathways, including AGE-RAGE signaling pathway, PI3K-Akt signaling pathway and IL-17 signaling pathway. MD results showed that quercetin, wogonin, and kaempferol active components had good affinity with IL6, TP53, and VEGFA core proteins. Conclusion The HF-CHRM can treat ONFH by multi-component, multi-target, and multi-pathway comprehensive action.


2010 ◽  
Vol 9 (3) ◽  
pp. 85-90
Author(s):  
L. M. Ogorodova ◽  
M. B. Freidin ◽  
A. E. Sazonov ◽  
O. S. Fyodorova ◽  
I. A. Deyev ◽  
...  

To investigate the molecular mechanisms of human immune response modification by Opisthorchis felineus antigens in bronchial asthma. The experimental study was performed with cell cultures from patients with bronchial asthma, patients with opisthorchiasis, and patients with BA and opisthorchiasis co-occurred. A proposed down-regulation of immune response by higher level of IL10 and TGFB genes expression in patients with opisthorchiasis was revealed.


2020 ◽  
Author(s):  
Xiang Zhou ◽  
Keying Zhang ◽  
Fa Yang ◽  
Chao Xu ◽  
Jianhua Jiao ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is a disease with higher morbidity, mortality, and poor prognosis in the whole world. Understanding the crosslink between HCC and the immune system is essential for people to uncover a few potential and valuable therapeutic strategies. This study aimed to reveal the correlation between HCC and immune-related genes and establish a clinical evaluation model. Methods: We had analyzed the clinical information consisted of 373 HCC and 49 normal samples from the cancer genome atlas (TCGA). The differentially expressed genes (DEGs) were selected by the Wilcoxon test and the immune-related differentially expressed genes (IRDEGs) in DEGs were identified by matching DEGs with immune-related genes downloaded from the ImmPort database. Furthermore, the univariate Cox regression analysis and multivariate Cox regression analysis were performed to construct a prognostic risk model. Then, twenty-two types of tumor immune-infiltrating cells (TIICs) were downloaded from Tumor Immune Estimation Resource (TIMER) and were used to construct the correlational graphs between the TIICs and risk score by the CIBERSORT. Subsequently, the transcription factors (TFs) were gained in the Cistrome website and the differentially expressed TFs (DETFs) were achieved. Finally, the KEGG pathway analysis and GO analysis were performed to further understand the molecular mechanisms between DETFs and PDIRGs.Results: In our study, 5839 DEGs, 326 IRDEGs, and 31 prognosis-related IRDEGs (PIRDEGs) were identified. And 8 optimal PIRDEGs were employed to construct a prognostic risk model by multivariate Cox regression analysis. The correlation between risk genes and clinical characterizations and TIICs has verified that the prognostic model was effective in predicting the prognosis of HCC patients. Finally, several important immune-related pathways and molecular functions of the eight PIRDEGs were significantly enriched and there was a distinct association between the risk IRDEGs and TFs. Conclusion: The prognostic risk model showed a more valuable predicting role for HCC patients, and produced many novel therapeutic targets and strategies for HCC.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Chun Li ◽  
Xia Du ◽  
Yang Liu ◽  
Qi-Qi Liu ◽  
Wen Bing Zhi ◽  
...  

Cardiocerebral vascular diseases (CCVDs) are the main reasons for high morbidity and mortality all over the world, including atherosclerosis, hypertension, myocardial infarction, stroke, and so on. Chinese herbs pair of the Cinnamomum cassia Presl (Chinese name, rougui) and the Aconitum carmichaelii Debx (Chinese name, fuzi) can be effective in CCVDs, which is recorded in the ancient classic book Shennong Bencao Jing, Mingyibielu and Thousand Golden Prescriptions. However, the active ingredients and the molecular mechanisms of rougui-fuzi in treatment of CCVDs are still unclear. This study was designed to apply a system pharmacology approach to reveal the molecular mechanisms of the rougui-fuzi anti-CCVDs. The 163 candidate compounds were retrieved from Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP). And 84 potential active compounds and the corresponding 42 targets were obtained from systematic model. The underlying mechanisms of the therapeutic effect for rougui-fuzi were investigated with gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Then, component-target-disease (C-T-D) and target-pathway (T-P) networks were constructed to further dissect the core pathways, potential targets, and active compounds in treatment of CCVDs for rougui-fuzi. We also constituted protein-protein in interaction (PPI) network by the reflect target protein of the crucial pathways against CCVDs. As a result, 21 key compounds, 8 key targets, and 3 key pathways were obtained for rougui-fuzi. Afterwards, molecular docking was performed to validate the reliability of the interactions between some compounds and their corresponding targets. Finally, UPLC-Q-Exactive-MSE and GC-MS/MS were analyzed to detect the active ingredients of rougui-fuzi. Our results may provide a new approach to clarify the molecular mechanisms of Chinese herb pair in treatment with CCVDs at a systematic level.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaoqin Li ◽  
Xiao Yang ◽  
Zude Ding ◽  
Xi Du ◽  
Jincheng Wen

Engineered cementitious composites (ECC) have higher ultimate tensile strains than normal concrete. The mechanical properties of ECC strongly depend on raw materials and the mix proportions. The uniform design test method and alternating conditional expectation, which is a nonparametric regression analysis method, were used to design the ECC mix proportion. According to the regression analysis, the optimized W/B, S/B, and F/B ranges could be obtained as 0.35–0.42, 0.25–0.3, and 0.02, respectively. The tested proportions for validation were randomly adopted within the range of W/B, S/B, and F/B. The uniaxial compression, tension, and four-point bending tests were conducted to verify the material behaviour of the designed ECC. Results showed that all the specimens had large ultimate tensile strains and high fracture energy capacities, and strain hardening was also observed. The fibers were found to be uniformly distributed in the specimens by using a scanning electron microscope. This paper may provide theoretical and practical guidance for the ECC and other cement-based material mix proportion design.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3321 ◽  
Author(s):  
Jinlan Lu ◽  
Ling Liu ◽  
Xingyu Zhu ◽  
Li Wu ◽  
Zhipeng Chen ◽  
...  

Qing’e Pills is a Chinese traditional herbal product, which is often used to strengthen muscles and bones in TCM (traditional Chinese Medicine) practice. Its two main component herbs, namely, Cortex Eucommiae and Fructus Psoraleae are both required to be salt-fried according to TCM theory. We have evaluated the effects of salt-frying treated herbs on Caco-2 cell uptake behavior for those active ingredients of Qing’e Pills. By investigating of various variables, including MTT, temperature, inhibitors, pH, salt concentration and herb processing methods, we tried to clarify whether the salt-processing on herbs was necessary or not. Results showed that, compared to other processing methods, the salt-frying process significantly (p < 0.01) enhanced the absorption of effective components of Qing’e Pills. The way that psoralen, isopsoralen, psoralenoside and geniposide acid entered Caco-2 cells at low concentrations was via passive diffusion. These components were not substrates of P-glycoprotein. It demonstrated that the salt-frying process not only enhanced the concentration of active components in herb extract, but also changed their absorption behaviors. Nevertheless, the mechanism of absorption behavior changing needs to be further investigated.


Sign in / Sign up

Export Citation Format

Share Document