Lattice Parameter Dependence of Refractive Index and Dielectric Constant of Czochralski Grown Rare-Earth Garnet Single Crystals in Solid Solution

2002 ◽  
Vol 41 (Part 1, No. 8) ◽  
pp. 5334-5335 ◽  
Author(s):  
Hideo Kimura ◽  
Akimitsu Miyazaki
2019 ◽  
Vol 37 (1) ◽  
pp. 65-70
Author(s):  
M.M. El-Nahass ◽  
H.A.M. Ali

AbstractOptical properties of Si single crystals with different orientations (1 0 0) and (1 1 1) were investigated using spectrophotometric measurements in a spectral range of 200 nm to 2500 nm. The data of optical absorption revealed an indirect allowed transition with energy gap of 1.1 ± 0.025 eV. An anomalous dispersion in refractive index. The normal dispersion of the refractive index was discussed according to Wemple-DiDomenico single oscillator model. The oscillator energy Eo, dispersion energy Ed, high frequency dielectric constant ∈∞, lattice dielectric constant ∈L and electronic polarizability αe were estimated. The real ∈1 and imaginary ∈2 parts of dielectric constant were also determined.


2007 ◽  
Vol 539-543 ◽  
pp. 1565-1570 ◽  
Author(s):  
Yoshihisa Harada ◽  
David C. Dunand

The microstructure of ternary Al3(Sc1-yREy) intermetallic compounds (where RE is one of the rare-earth elements La, Ce, Nd, Sm, Eu, Yb or Lu), was investigated as a function of RE concentration for 0<y≤0.75. Alloys with La, Ce, Nd, Sm or Eu additions consist of a L12 phase containing a dendritic second phase with D019 (La, Ce, Nd, Sm) or C11b (Eu) structure. Alloys with Yb or Lu additions show a single L12 phase. The RE solubility limits at 1373 K in the L12-Al3(Sc1-yREy) phase are very low for La, Nd, Ce and Eu (0.08-0.41 at.% or y=0.0032-0.0164), low for Sm (3.22 at.% or y=0.1288) and complete for Yb and Lu. The lattice parameter of the L12 solid-solution increases linearly with RE concentration and the magnitude of this effect is correlated with the atomic size mismatch between Sc and the RE elements. The Vickers micro-hardness of the L12 solid-solution increases linearly with increasing RE concentration.


1996 ◽  
Vol 422 ◽  
Author(s):  
B. J. H. Stadler ◽  
J. P. Lorenzo

AbstractRare earth (Gd, Eu, Er) doped InGaAs and InP layers were grown by liquid phase epitaxy (LPE). The refractive index of these layers was observed to increase with the addition of the rare earth ions. The observed increase could not be explained by changes in host composition as typically calculated from changes in lattice parameter. In fact, the refractive index was seen to increase (∼0.25) by an order of magnitude more than would be expected by the change in the lattice parameter (∼0.02). The increased refractive indices of InP layers due to Er-doping enabled waveguiding. These findings suggest that optically active waveguide devices can be fabricated from semiconducting hosts by simple rare earth doping.


Author(s):  
M. Larsen ◽  
R.G. Rowe ◽  
D.W. Skelly

Microlaminate composites consisting of alternating layers of a high temperature intermetallic compound for elevated temperature strength and a ductile refractory metal for toughening may have uses in aircraft engine turbines. Microstructural stability at elevated temperatures is a crucial requirement for these composites. A microlaminate composite consisting of alternating layers of Cr2Nb and Nb(Cr) was produced by vapor phase deposition. The stability of the layers at elevated temperatures was investigated by cross-sectional TEM.The as-deposited composite consists of layers of a Nb(Cr) solid solution with a composition in atomic percent of 91% Nb and 9% Cr. It has a bcc structure with highly elongated grains. Alternating with this Nb(Cr) layer is the Cr2Nb layer. However, this layer has deposited as a fine grain Cr(Nb) solid solution with a metastable bcc structure and a lattice parameter about half way between that of pure Nb and pure Cr. The atomic composition of this layer is 60% Cr and 40% Nb. The interface between the layers in the as-deposited condition appears very flat (figure 1). After a two hour, 1200 °C heat treatment, the metastable Cr(Nb) layer transforms to the Cr2Nb phase with the C15 cubic structure. Grain coarsening occurs in the Nb(Cr) layer and the interface between the layers roughen. The roughening of the interface is a prelude to an instability of the interface at higher heat treatment temperatures with perturbations of the Cr2Nb grains penetrating into the Nb(Cr) layer.


Author(s):  
E. L. Hall ◽  
A. Mogro-Campero ◽  
N. Lewis ◽  
L. G. Turner

There have been a large number of recent studies of the growth of Y-Ba-Cu-O thin films, and these studies have employed a variety of substrates and growth techniques. To date, the highest values of Tc and Jc have been found for films grown by sputtering or coevaporation on single-crystal SrTiO3 substrates, which produces a uniaxially-aligned film with the YBa2Cu3Ox c-axis normal to the film plane. Multilayer growth of films on the same substrate produces a triaxially-aligned film (regions of the film have their c-axis parallel to each of the three substrate <100> directions) with lower values of Jc. Growth of films on a variety of other polycrystalline or amorphous substrates produces randomly-oriented polycrystalline films with low Jc. Although single-crystal SrTiO3 thus produces the best results, this substrate material has a number of undesireable characteristics relative to electronic applications, including very high dielectric constant and a high loss tangent at microwave frequencies. Recently, Simon et al. have shown that LaAlO3 could be used as a substrate for YBaCuO film growth. This substrate is essentially a cubic perovskite with a lattice parameter of 0.3792nm (it has a slight rhombohedral distortion at room temperature) and this material exhibits much lower dielectric constant and microwave loss tangents than SrTiO3. It is also interesting from a film growth standpoint since it has a slightly smaller lattice parameter than YBa2Cu3Ox (a=0.382nm, b=c/3=0.389nm), while SrTiO3 is slightly larger (a=0.3905nm).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Durga Sankar Vavilapalli ◽  
Ambrose A. Melvin ◽  
F. Bellarmine ◽  
Ramanjaneyulu Mannam ◽  
Srihari Velaga ◽  
...  

AbstractIdeal sillenite type Bi12FeO20 (BFO) micron sized single crystals have been successfully grown via inexpensive hydrothermal method. The refined single crystal X-ray diffraction data reveals cubic Bi12FeO20 structure with single crystal parameters. Occurrence of rare Fe4+ state is identified via X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The lattice parameter (a) and corresponding molar volume (Vm) of Bi12FeO20 have been measured in the temperature range of 30–700 °C by the X-ray diffraction method. The thermal expansion coefficient (α) 3.93 × 10–5 K−1 was calculated from the measured values of the parameters. Electronic structure and density of states are investigated by first principle calculations. Photoelectrochemical measurements on single crystals with bandgap of 2 eV reveal significant photo response. The photoactivity of as grown crystals were further investigated by degrading organic effluents such as Methylene blue (MB) and Congo red (CR) under natural sunlight. BFO showed photodegradation efficiency about 74.23% and 32.10% for degrading MB and CR respectively. Interesting morphology and microstructure of pointed spearhead like BFO crystals provide a new insight in designing and synthesizing multifunctional single crystals.


Sign in / Sign up

Export Citation Format

Share Document