Positive Threshold-Voltage Shift of Y2O3Gate Dielectric InAlN/GaN-on-Si (111) MOSHEMTs with Respect to HEMTs

2014 ◽  
Vol 3 (6) ◽  
pp. Q120-Q126 ◽  
Author(s):  
M. K. Bera ◽  
Y. Liu ◽  
L. M. Kyaw ◽  
Y. J. Ngoo ◽  
S. P. Singh ◽  
...  
2007 ◽  
Vol 1035 ◽  
Author(s):  
Maria Merlyne De Souza ◽  
Richard B Cross ◽  
Suhas Jejurikar ◽  
K P Adhi

AbstractThe performance of ZnO TFTs fabricated via RF sputtering, with Aluminium Nitride (AlN) as the underlying insulator are reported. The surface roughness of ZnO with AlN is lower than that with SiN by at least 5 times, and that with SiO2 by 30 times. The resulting mobility for the three insulators AlN, SiN, SiO2 using identical process is found to be 3, 0.2-0.7 and 0.1-0.25 cm2/Vs respectively. There does not appear to be any corresponding improvement in the stability of the AlN devices. The devices demonstrate significant positive threshold voltage shift with positive gate bias and negative threshold voltage shift with negative gate bias. The underlying cause is surmised to be ultra-fast interface states in combination with bulk traps in the ZnO.


2019 ◽  
Vol 66 (6) ◽  
pp. 2544-2550 ◽  
Author(s):  
Sayak Dutta Gupta ◽  
Ankit Soni ◽  
Vipin Joshi ◽  
Jeevesh Kumar ◽  
Rudrarup Sengupta ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 327
Author(s):  
Je-Hyuk Kim ◽  
Jun Tae Jang ◽  
Jong-Ho Bae ◽  
Sung-Jin Choi ◽  
Dong Myong Kim ◽  
...  

In this study, we analyzed the threshold voltage shift characteristics of bottom-gate amorphous indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) under a wide range of positive stress voltages. We investigated four mechanisms: electron trapping at the gate insulator layer by a vertical electric field, electron trapping at the drain-side GI layer by hot-carrier injection, hole trapping at the source-side etch-stop layer by impact ionization, and donor-like state creation in the drain-side IGZO layer by a lateral electric field. To accurately analyze each mechanism, the local threshold voltages of the source and drain sides were measured by forward and reverse read-out. By using contour maps of the threshold voltage shift, we investigated which mechanism was dominant in various gate and drain stress voltage pairs. In addition, we investigated the effect of the oxygen content of the IGZO layer on the positive stress-induced threshold voltage shift. For oxygen-rich devices and oxygen-poor devices, the threshold voltage shift as well as the change in the density of states were analyzed.


2008 ◽  
Vol 47 (4) ◽  
pp. 3189-3192 ◽  
Author(s):  
Chang Bum Park ◽  
Takamichi Yokoyama ◽  
Tomonori Nishimura ◽  
Koji Kita ◽  
Akira Toriumi

Sign in / Sign up

Export Citation Format

Share Document