scholarly journals Decidual PTEN expression is required for trophoblast invasion in the mouse

2010 ◽  
Vol 299 (6) ◽  
pp. E936-E946 ◽  
Author(s):  
Marie-Noëlle Laguë ◽  
Jacqui Detmar ◽  
Marilène Paquet ◽  
Alexandre Boyer ◽  
JoAnne S. Richards ◽  
...  

Trophoblast invasion likely depends on complex cross talk between the fetal and maternal tissues and may involve the modulation of phosphatidylinositol 3-kinase (PI3K)/AKT signaling activity in maternal decidual cells. In this report, we studied implantation in Ptentm1Hwu/tm1Hwu ;Amhr2tm3(cre)Bhr/+ mice, which lack the PI3K signaling antagonist gene Pten in myometrial and stromal/decidual cells. Primiparous Ptentm1Hwu/tm1Hwu ;Amhr2tm3(cre)Bhr/+ mice were found to be subfertile because of increased fetal mortality at e11.5. Histopathological analyses revealed a failure of decidual regression in these mice, accompanied by reduced or absent invasion of fetal trophoblast glycogen cells and giant cells, abnormal development of the placental labyrinth, and frequent apparent intrauterine fetal growth restriction. Unexpectedly, the loss of phosphate and tensin homolog deleted on chromosome 10 (PTEN) expression in Ptentm1Hwu/tm1Hwu ;Amhr2tm3(cre)Bhr/+ decidual cells was not accompanied by a detectable increase in AKT phosphorylation or altered expression or activation of PI3K/AKT downstream effectors such as mammalian target of rapamycin or glycogen synthase kinase-3β. Terminal deoxynucleotidyl transferase-mediated nick end labeling and bromodeoxyuridine incorporation analyses attributed to the lack of decidual regression mainly to decreased apoptosis in Ptentm1Hwu/tm1Hwu ;Amhr2tm3(cre)Bhr/+ decidual cells, rather than to increased proliferation. Remodeling of the maternal vasculature was delayed in Ptentm1Hwu/tm1Hwu ;Amhr2tm3(cre)Bhr/+ uteri at e11.5, as evidenced by persistence of vascular smooth muscle and decreased infiltration of uterine natural killer cells. In addition, thickening of the myometrium and disorganization of the muscle fibers were observed before and throughout gestation. Almost all Ptentm1Hwu/tm1Hwu ;Amhr2tm3(cre)Bhr/+ mice failed to carry a second litter to term, apparently attributable to endometrial hyperplasia and uterine infections. Together, these data demonstrate novel roles of PTEN in the mammalian uterus and its requirement for proper trophoblast invasion and decidual regression.

2006 ◽  
Vol 20 (12) ◽  
pp. 3240-3250 ◽  
Author(s):  
Lei Bao ◽  
Sangeeta Devi ◽  
Jennifer Bowen-Shauver ◽  
Susan Ferguson-Gottschall ◽  
Lorraine Robb ◽  
...  

Abstract IL-11 expressed by endometrial stromal cells is crucial for normal pregnancy. IL-11 receptor α (IL-11Rα) null mice are infertile due to abnormal development of the placenta. In these mice, the mesometrial decidual tissue, which is the site of trophoblast invasion, thins and disappears at mid-pregnancy. Degeneration of the decidua is accompanied by uncontrolled trophoblast invasion. In this report, we show, using IL-11Rα null mice, that a defect in IL-11 signaling in the decidua leads to severe down-regulation of α2-macroglobulin (α2-MG), a metalloproteinase inhibitor crucial for limiting trophoblast invasion. We also present evidence, using uterine stromal cells that decidualize in culture, that IL-11 robustly stimulates the endogenous α2-MG expression and enhances α2-MG promoter activity. Serial 5′ deletion and internal deletion of the promoter reveal two important signal transducer and activator of transcription (Stat) binding sites. Mutation of either one of these motifs decreases IL-11 stimulation, whereas double mutation prevents IL-11 action. We also found that IL-11 activates Janus kinase 2 (Jak2) and induces rapid phosphorylation, nuclear translocation, and promoter binding activity of Stat3 in decidual cells, whereas Jak1, Tyk2, and Stat5 activities are not affected. In addition, Jak2 inhibitor totally prevents α2-MG expression in decidual cells. Taken together, results of this investigation provide, at least in part, an explanation for the overinvasiveness of the trophoblast in IL-11Rα null mice and reveal, for the first time, that IL-11 signals through the Jak2/Stat3 pathway in decidual cells to stimulate the expression of α2-MG, a protease inhibitor essential for normal placentation in pregnancy.


Endocrinology ◽  
2016 ◽  
Vol 157 (7) ◽  
pp. 2883-2893 ◽  
Author(s):  
Joanne Muter ◽  
Paul J. Brighton ◽  
Emma S. Lucas ◽  
Lauren Lacey ◽  
Anatoly Shmygol ◽  
...  

Decidualization denotes the transformation of endometrial stromal cells into specialized decidual cells. In pregnancy, decidual cells form a protective matrix around the implanting embryo, enabling coordinated trophoblast invasion and formation of a functional placenta. Continuous progesterone (P4) signaling renders decidual cells resistant to various environmental stressors, whereas withdrawal inevitably triggers tissue breakdown and menstruation or miscarriage. Here, we show that PLCL1, coding phospholipase C (PLC)-related catalytically inactive protein 1 (PRIP-1), is highly induced in response to P4 signaling in decidualizing human endometrial stromal cells (HESCs). Knockdown experiments in undifferentiated HESCs revealed that PRIP-1 maintains basal phosphoinositide 3-kinase/Protein kinase B activity, which in turn prevents illicit nuclear translocation of the transcription factor forkhead box protein O1 and induction of the apoptotic activator BIM. By contrast, loss of this scaffold protein did not compromise survival of decidual cells. PRIP-1 knockdown did also not interfere with the responsiveness of HESCs to deciduogenic cues, although the overall expression of differentiation markers, such as PRL, IGFBP1, and WNT4, was blunted. Finally, we show that PRIP-1 in decidual cells uncouples PLC activation from intracellular Ca2+ release by attenuating inositol 1,4,5-trisphosphate signaling. In summary, PRIP-1 is a multifaceted P4-inducible scaffold protein that gates the activity of major signal transduction pathways in the endometrium. It prevents apoptosis of proliferating stromal cells and contributes to the relative autonomy of decidual cells by silencing PLC signaling downstream of Gq protein-coupled receptors.


2021 ◽  
pp. 1-17
Author(s):  
Jessica Lynn ◽  
Mingi Park ◽  
Christiana Ogunwale ◽  
George K. Acquaah-Mensah

Dementias, including the type associated with Alzheimer’s disease (AD), are on the rise worldwide. Similarly, type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic diseases globally. Although mechanisms and treatments are well-established for T2DM, there remains much to be discovered. Recent research efforts have further investigated factors involved in the etiology of AD. Previously perceived to be unrelated diseases, commonalities between T2DM and AD have more recently been observed. As a result, AD has been labeled as “type 3 diabetes”. In this review, we detail the shared processes that contribute to these two diseases. Insulin resistance, the main component of the pathogenesis of T2DM, is also present in AD, causing impaired brain glucose metabolism, neurodegeneration, and cognitive impairment. Dysregulation of insulin receptors and components of the insulin signaling pathway, including protein kinase B, glycogen synthase kinase 3β, and mammalian target of rapamycin are reported in both diseases. T2DM and AD also show evidence of inflammation, oxidative stress, mitochondrial dysfunction, advanced glycation end products, and amyloid deposition. The impact that changes in neurovascular structure and genetics have on the development of these conditions is also being examined. With the discovery of factors contributing to AD, innovative treatment approaches are being explored. Investigators are evaluating the efficacy of various T2DM medications for possible use in AD, including but not limited to glucagon-like peptide-1 receptor agonists, and peroxisome proliferator-activated receptor-gamma agonists. Furthermore, there are 136 active trials involving 121 therapeutic agents targeting novel AD biomarkers. With these efforts, we are one step closer to alleviating the ravaging impact of AD on our communities.


Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 165-181 ◽  
Author(s):  
B. Risek ◽  
N.B. Gilula

The expression of three different members of the gap junction multigene family, alpha 1 (Cx43), beta 1 (Cx32), and beta 2 (Cx26), was analysed in the rat implantation chamber (a structural unit containing fetal, extraembryonic and maternal components within the pregnant uterus) during mid- and late stages of gestation as well as in the delivering, post-partum and non-pregnant uterus. A differential, spatiotemporal and cell-type-specific regulation of gap junctional coexpression was observed for beta 1 and beta 2 in all epithelia examined (visceral, luminal and glandular), as well as for alpha 1 and beta 2 in decidual cells and keratinocytes of the fetal epidermis. alpha 1 antigen was detected in the mesometrial stroma, mesometrial myometrium, connective tissue, mesothelia of the amnion and visceral yolk sac and in the allantoic mesodermal layer throughout gestation. In addition, expression of alpha 1 in the placental basal zone and trophoblast giant cells coincided with the differentiation of these cells. beta 2 expression was observed prominently in the chorionic villi of the placental labyrinth. The presence of beta 1 and beta 2 in the visceral epithelium (visceral yolk sac = the primary route for embryonic nourishment prior to the formation of the chorioallantoic placenta) and beta 2 in the chorionic villi (placental barrier = the major fetomaternal exchange route) suggests that gap junctions have an important role in fetomaternal communication.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 432 ◽  
Author(s):  
Stéphane C Berneau ◽  
Peter T Ruane ◽  
Daniel R Brison ◽  
Susan J Kimber ◽  
Melissa Westwood ◽  
...  

At the onset of pregnancy, embryo implantation is initiated by interactions between the endometrial epithelium and the outer trophectoderm cells of the blastocyst. Osteopontin (OPN) is expressed in the endometrium and is implicated in attachment and signalling roles at the embryo–epithelium interface. We have characterised OPN in the human endometrial epithelial Ishikawa cell line using three different monoclonal antibodies, revealing at least nine distinct molecular weight forms and a novel secretory pathway localisation in the apical domain induced by cell organisation into a confluent epithelial layer. Mouse blastocysts co-cultured with Ishikawa cell layers served to model embryo apposition, attachment and initial invasion at implantation. Exogenous OPN attenuated initial, weak embryo attachment to Ishikawa cells but did not affect the attainment of stable attachment. Notably, exogenous OPN inhibited embryonic invasion of the underlying cell layer, and this corresponded with altered expression of transcription factors associated with differentiation from trophectoderm (Gata2) to invasive trophoblast giant cells (Hand1). These data demonstrate the complexity of endometrial OPN forms and suggest that OPN regulates embryonic invasion at implantation by signalling to the trophectoderm.


2004 ◽  
Vol 92 (10) ◽  
pp. 752-766 ◽  
Author(s):  
Robert Greenfield ◽  
Alistair Stewart ◽  
Brian Birch ◽  
Alan Cooper ◽  
Bashir Lwaleed

SummarySemen contains enzymes and inhibitors of the haemostatic system as well as the high molecular weight seminal vesicle (HMW-SV) proteins. The former may have roles in seminal clotting and in liquefaction through “fibrinolytic” activity, which may ultimately affect fertility. Although a limited number of studies have addressed the subject, the role of clotting and fibrinolytic factors in semen remains poorly understood. The liquefaction time and the distribution of components vary across split ejaculates. This may have an important bearing on the way clotting/fibrinolytic factors in semen are assessed. Semen contains tissue factor (TF, Thromboplastin, CD142), which originates from the prostate and is associated with prostasomes. The function of TF (and prostasomes) in semen is still a matter for speculation. Recently the presence of minute amounts of factor VII in semen has been demonstrated but its importance is uncertain. Semen also contains a thrombin-like enzyme, prothrombin fragments 1 and 2 (F1+2), D-dimer (DD) and thrombin-antithrombin (TAT) complexes. The presence of several fibrinolytic factors has been demonstrated in semen but few questions about their potential impact on semen quality have been raised. Factors found include tissue plasminogen activator (t-PA), urinary plasminogen activator (u-PA) and plasmin. There are also traces of fibrinogen, plasminogen, plasminogen activator inhibitor-1 (PAI-1), factorVIII coagulant activity (VIII:c) and fibrin monomers. The co-ordinate expression of both TF and PAI-1 by decidual cells of the endometrium is believed to be important in maintaining haemostasis during endovascular trophoblast invasion. Kallikrein-like serine protease inhibitors including prostate specific antigen (PSA) are known to be present in semen at high concentrations. In semen PSA is also found in a complex form with protein C inhibitor (PCI) with mutually inhibitory consequences. A better understanding of the spectrum of coagulating and liquefaction agents in semen to include classical haemostatic processes and the pathogenesis resulting from any imbalances between or within either system may provide the basis for the development of more selective and efficient agents affecting global fertility. Here we review aspects of male reproductive physiology in the light of recent findings concerning conventional clotting/fibrinolytic systems in human semen with a view to stimulating further research.


2019 ◽  
Vol 317 (6) ◽  
pp. C1115-C1127
Author(s):  
Yang Zhang ◽  
Lu Yan ◽  
Jiali Liu ◽  
Sheng Cui ◽  
Jingtao Qiu

In the early phase of pregnancy, decidualization is an indispensable event after mammal embryo implantation, accompanied by proliferation and differentiation of uterine stromal cells. Type II cGMP-dependent protein kinase (Prkg2) belongs to the family of serine/threonine kinase, which plays multiple roles in cellular signaling pathways to control proliferation and differentiation. However, the regulatory function and molecular mechanism of Prkg2 in decidualization are still unknown. In this study, we show that Prkg2 has a gradually increased expression pattern during peri-implantation and artificial decidualization, and the expression of Prkg2 is induced by estrogen and progesterone in the ovariectomized mouse uteri and primary cultured uterine stromal cells, the process of which is blocked by treating with estrogen receptor (ER) antagonist (ICI-182,780) and progesterone receptor (PR) antagonist (RU-486). Inhibition of Prkg2 activity by HA-100 promotes uterine stromal cell proliferation but compromises decidualization with decreased expression of prolactin family 8, subfamily a, member 2. In addition, the functional regulation of decidualization by Prkg2 is accomplished by its induced phosphorylation of glycogen synthase kinase-3β (GSK-3β) at serine-9, which results in accumulation of β-catenin in the decidual cells. Taken together, our findings demonstrate that estrogen and progesterone upregulate the expression of Prkg2 in uterine stromal cells depending on ER and PR; Prkg2 promotes phosphorylation of GSK-3β at serine-9 and inactivates it, leading to the accumulation of β-catenin and promoting the process of decidualization. In addition to revealing the regulatory mechanism of Prkg2 that ensures the success of uterine decidualization, our findings will contribute to the understanding in the maintenance of early pregnancy.


Sign in / Sign up

Export Citation Format

Share Document