scholarly journals Structural coupling of cardiomyocytes and noncardiomyocytes: quantitative comparisons using a novel micropatterned cell pair assay

2008 ◽  
Vol 295 (1) ◽  
pp. H390-H400 ◽  
Author(s):  
Dawn M. Pedrotty ◽  
Rebecca Y. Klinger ◽  
Nima Badie ◽  
Sara Hinds ◽  
Ara Kardashian ◽  
...  

Well-controlled studies of the structural and functional interactions between cardiomyocytes and other cells are essential for understanding heart pathophysiology and for the further development of safe and efficient cell therapies. We established a novel in vitro assay composed of a large number of individual micropatterned cell pairs with reproducible shape, size, and region of cell-cell contact. This assay was applied to quantify and compare the frequency of expression and distribution of electrical (connexin43) and mechanical (N-cadherin) coupling proteins in 5,000 cell pairs made of cardiomyocytes (CMs), cardiac fibroblasts (CFs), skeletal myoblasts (SKMs), and mesenchymal stem cells (MSCs). We found that for all cell pair types, side-side contacts between two cells formed 4.5–14.3 times more often than end-end contacts. Both connexin43 and N-cadherin were expressed in all homotypic CM pairs but in only 13.4–91.6% of pairs containing noncardiomyocytes, where expression was either junctional (at the site of cell-cell contact) or diffuse (inside the cytoplasm). CM expression was exclusively junctional in homotypic pairs but predominantly diffuse in heterotypic pairs. Noncardiomyocyte homotypic pairs exhibited diffuse expression 1.7–8.7 times more often than junctional expression, which was increased 2.6–4.4 times in heterotypic pairs. Junctional connexin43 and N-cadherin expression, respectively, were found in 38.6 ± 7.3 and 39.6 ± 6.2% of CM-MSC pairs, 21.9 ± 5.0 and 13.6 ± 1.9% of CM-SKM pairs, and in only 3.8–9.6% of CM-CF pairs. Measured frequencies of protein expression and distribution were stable for at least 4 days. Described studies in micropatterned cell pairs shed new light on cellular interactions relevant for cardiac function and cell therapies.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji-wen Cheng ◽  
Li-xia Duan ◽  
Yang Yu ◽  
Pu Wang ◽  
Jia-le Feng ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) play a crucial role in cancer development and tumor resistance to therapy in prostate cancer, but the influence of MSCs on the stemness potential of PCa cells by cell–cell contact remains unclear. In this study, we investigated the effect of direct contact of PCa cells with MSCs on the stemness of PCa and its mechanisms. Methods First, the flow cytometry, colony formation, and sphere formation were performed to determine the stemness of PCaMSCs, and the expression of stemness-related molecules (Sox2, Oct4, and Nanog) was investigated by western blot analysis. Then, we used western blot and qPCR to determine the activity levels of two candidate pathways and their downstream stemness-associated pathway. Finally, we verified the role of the significantly changed pathway by assessing the key factors in this pathway via in vitro and in vivo experiments. Results We established that MSCs promoted the stemness of PCa cells by cell–cell contact. We here established that the enhanced stemness of PCaMSCs was independent of the CCL5/CCR5 pathway. We also found that PCaMSCs up-regulated the expression of Notch signaling-related genes, and inhibition of Jagged1-Notch1 signaling in PCaMSCs cells significantly inhibited MSCs-induced stemness and tumorigenesis in vitro and in vivo. Conclusions Our results reveal a novel interaction between MSCs and PCa cells in promoting tumorigenesis through activation of the Jagged1/Notch1 pathway, providing a new therapeutic target for the treatment of PCa.


2021 ◽  
Author(s):  
Mattias Malaguti ◽  
Rosa Portero Migueles ◽  
Jennifer Annoh ◽  
Daina Sadurska ◽  
Guillaume Blin ◽  
...  

ABSTRACTCell-cell interactions govern differentiation and cell competition in pluripotent cells during early development, but the investigation of such processes is hindered by a lack of efficient analysis tools. Here we introduce SyNPL: clonal pluripotent stem cell lines which employ optimised Synthetic Notch (SynNotch) technology to report cell-cell interactions between engineered “sender” and “receiver” cells in cultured pluripotent cells and chimaeric mouse embryos. A modular design makes it straightforward to adapt the system for programming differentiation decisions non-cell-autonomously in receiver cells in response to direct contact with sender cells. We demonstrate the utility of this system by enforcing neuronal differentiation at the boundary between two cell populations. In summary, we provide a new tool which could be used to identify cell interactions and to profile changes in gene or protein expression that result from direct cell-cell contact with defined cell populations in culture and in early embryos, and which can be adapted to generate synthetic patterning of cell fate decisions.


1996 ◽  
Vol 132 (1) ◽  
pp. 181-193 ◽  
Author(s):  
S Yoshida ◽  
A Fujisawa-Sehara ◽  
T Taki ◽  
K Arai ◽  
Y Nabeshima

Myogenic cells provide excellent in vitro models for studying the cell growth and differentiation. In this study we report that lysophosphatidic acid (LPA), a bioactive phospholipid contained in serum, stimulates the growth and inhibits the differentiation of mouse C2C12 myoblast cells, in a distinct manner from basic fibroblast growth factor (bFGF) whose mitotic and anti-differentiation actions have been well investigated. These actions of LPA were both blocked by pertussis toxin, suggesting the involvement of Gi class of G proteins, whereas bFGF acts through receptor tyrosine kinases. Detailed analysis revealed that LPA and bFGF act differently in regulating the myogenic basic helix-loop-helix (bHLH) proteins, the key players in myogenic differentiation process. LPA stimulates the proliferation of undifferentiated myoblasts allowing the continued expression of MyoD, but in contrast, bFGF does so with the MyoD expression suppressed at the mRNA level. Both compounds maintain the myf-5 expression, and suppress the myogenin expression. In addition, while LPA did not inhibit cell-cell contact-induced differentiation, bFGF strongly inhibited this process. Furthermore, LPA and bFGF act cooperatively in their mitogenic and anti-differentiation abilities. These findings indicate that LPA and bFGF differently stimulate intracellular signaling pathways, resulting in proliferating myoblasts each bearing a distinct expression pattern of myogenic bHLH proteins and distinct differentiation potentials in response to cell-cell contact, and illustrate the biological significance of Gi-mediated and tyrosine kinase-mediated signals.


1994 ◽  
Vol 160 (3) ◽  
pp. 445-454 ◽  
Author(s):  
Masanobu Nanno ◽  
Masahiro Hata ◽  
Hideki Yagi ◽  
Tsunetoshi Itoh ◽  
Hideyuki Doi ◽  
...  

1991 ◽  
Vol 112 (3) ◽  
pp. 479-490 ◽  
Author(s):  
M G Lampugnani ◽  
M Resnati ◽  
E Dejana ◽  
P C Marchisio

This paper shows that, in confluent human umbilical vein endothelial cell (EC) monolayers, the integrin heterodimers alpha 2 beta 1 and alpha 5 beta 1, but not other members of the beta 1 subfamily, are located at cell-cell contact borders and not at cellular free edges. Also the alpha v chain, but not its most common partner beta 3, that is widely expressed in EC cell-matrix junctions, is found at cell-cell borders. In EC monolayers, the putative ligands of alpha 2 beta 1 and alpha 5 beta 1 receptors, i.e., laminin, collagen type IV, and fibronectin, are also organized in strands corresponding to cell-cell borders. The location of the above integrin receptors is not an artifact of in vitro culture since it has been noted also in explanted islets of the native umbilical vein endothelium. The integrins alpha 2 beta 1 and alpha 5 beta 1 play a role in the maintenance of endothelial monolayer continuity in vitro. Indeed, specific antibodies to alpha 2 beta 1, alpha 5 beta 1, and the synthetic peptide GRGDSP alter its continuity without any initial cell detachment. Moreover, antibodies to alpha 5 beta 1 increase the permeation of macromolecules across confluent EC monolayers. In contrast beta 3 antibodies were ineffective. It is suggested that the relocation of integrins to cell-cell borders is a feature of cells programmed to form polarized monolayers since integrins have a different distribution in nonpolar confluent dermal fibroblasts. The conclusion is that some members of the integrin superfamily collaborate with other intercellular molecules to form lateral junctions and to control both the monolayer integrity and the permeability properties of the vascular endothelial lining. This also suggest that integrins are adhesion molecules provided with a unique biochemical adaptability to different biological functions.


2009 ◽  
Vol 296 (5) ◽  
pp. H1694-H1704 ◽  
Author(s):  
Indroneal Banerjee ◽  
John W. Fuseler ◽  
Arti R. Intwala ◽  
Troy A. Baudino

Interleukin-6 (IL-6) is a pleiotropic cytokine responsible for many different processes including the regulation of cell growth, apoptosis, differentiation, and survival in various cell types and organs, including the heart. Recent studies have indicated that IL-6 is a critical component in the cell-cell communication between myocytes and cardiac fibroblasts. In this study, we examined the effects of IL-6 deficiency on the cardiac cell populations, cardiac function, and interactions between the cells of the heart, specifically cardiac fibroblasts and myocytes. To examine the effects of IL-6 loss on cardiac function, we used the IL-6 −/− mouse. IL-6 deficiency caused severe cardiac dilatation, increased accumulation of interstitial collagen, and altered expression of the adhesion protein periostin. In addition, flow cytometric analyses demonstrated dramatic alterations in the cardiac cell populations of IL-6 −/− mice compared with wild-type littermates. We observed a marked increase in the cardiac fibroblast population in IL-6 −/− mice, whereas a concomitant decrease was observed in the other cardiac cell populations examined. Moreover, we observed increased cell proliferation and apoptosis in the developing IL-6 −/− heart. Additionally, we observed a significant decrease in the capillary density of IL-6 −/− hearts. To elucidate the role of IL-6 in the interactions between cardiac fibroblasts and myocytes, we performed in vitro studies and demonstrated that IL-6 deficiency attenuated the activation of the STAT3 pathway and VEGF production. Taken together, these data demonstrate that a loss of IL-6 causes cardiac dysfunction by shifting the cardiac cell populations, altering the extracellular matrix, and disrupting critical cell-cell interactions.


2007 ◽  
Vol 328 (2) ◽  
pp. 391-400 ◽  
Author(s):  
Shuang-yan Gao ◽  
Chun-yu Li ◽  
Tetsuya Shimokawa ◽  
Takehiro Terashita ◽  
Seiji Matsuda ◽  
...  

Development ◽  
1985 ◽  
Vol 87 (1) ◽  
pp. 87-97
Author(s):  
Massimo De Felici ◽  
Gregorio Siracusa

The adhesiveness of female and male mouse primordial germ cells (PGCs) to somatic cell monolayers of various origin has been studied in the definite conditions of an in vitro system. PGCs were isolated from the gonads of embryos of various post coital ages according to the method of De Felici & McLaren (1982), and seeded on the cell monolayers. PGCs from 12·5 to 15·5 days post coitum (dpc) embryos specifically adhered to Sertoli and follicular cells obtained from adult gonads. The percentage of female PGCs which adhered to follicular cell monolayers was significantly higher than that of male PGCs. No significant adhesion was seen between PGCs and somatic cell monolayers obtained from various embryonic and adult tissues. The results obtained indicate that the simple in vitro assay described in the present paper might help to characterize the cellular interactions between somatic and germ cells during gonadal development.


Blood ◽  
2012 ◽  
Vol 119 (20) ◽  
pp. 4708-4718 ◽  
Author(s):  
Anja Troeger ◽  
Amy J. Johnson ◽  
Jenna Wood ◽  
William G. Blum ◽  
Leslie A. Andritsos ◽  
...  

Abstract Trafficking of B-cell chronic lymphocytic leukemia (CLL) cells to the bone marrow and interaction with supporting stromal cells mediates important survival and proliferation signals. Previous studies have demonstrated that deletion of Rhoh led to a delayed disease onset in a murine model of CLL. Here we assessed the impact of RhoH on homing, migration, and cell-contact dependent interactions of CLL cells. Rhoh−/− CLL cells exhibited reduced marrow homing and subsequent engraftment. In vitro migration toward the chemokines CXCL12 and CXCL13 and cell-cell interactions between Rhoh−/− CLL cells and the supporting microenvironment was reduced. In the absence of RhoH the distribution of phosphorylated focal adhesion kinase, a protein known to coordinate activation of the Rho GTPases RhoA and Rac, appeared less polarized in chemokine-stimulated Rhoh−/− CLL cells, and activation and localization of RhoA and Rac was dysregulated leading to defective integrin function. These findings in the Rhoh−/− CLL cells were subsequently demonstrated to closely resemble changes in GTPase activation observed in human CLL samples after in vitro and in vivo treatment with lenalidomide, an agent with known influence on microenvironment protection, and suggest that RhoH plays a critical role in prosurvival CLL cell-cell and cell-microenvironment interactions with this agent.


Author(s):  
WAHYU FITRIANA ◽  
ARRY YANUAR ◽  
ADE ARSIANTI ◽  
HIROKI TANIMOTO ◽  
KIYOMI KAKIUCHI

Objective: The emergence of malaria as a global health problem over the past few decades, accompanied by the rise of chemoresistant strains ofPlasmodium falciparum, has emphasized the need for the discovery of new therapeutic drugs against this disease. In this study, enantiomericallyenriched (enantioenriched) analogs of triclosan were synthesized and evaluated for antimalarial activity against P. falciparum cultures.Methods: Enantioselective dihydroxylation of the olefin in amide seven was performed efficiently using chiral quinine ligand (DHQ)2PHAL to yieldenantioenriched dihydroxy propionamide derivative (+)-1 in moderate yields. In a similar way, the chiral quinidine ligand (DHQD)2PHAL was used asstereoselectivity agent yielded the desired enantioenriched (−)-1. The enantioenriched products were used for further in vitro assay, and accordingly thepercent enantiomeric excess (% ee) was not determined. The structures of compounds were proven by spectral data (1H NMR, 13C NMR, and mass spectra).Results: The phenol moiety at the C1 position of triclosan was chemically substituted with a methoxy group, in conjunction with an introducedstereocenter in a 2,3-dihydroxy-propionamide group at C2’ position. Unmodified triclosan inhibited the P. falciparum cultures with an IC50 value of27.2 μM. By contrast, the triclosan analogs, compounds (+)-1 and (−)-1, inhibited the P. falciparum cultures with IC50 values of 0.034 and 0.028 μM,respectively.Conclusion: Collectively, our preliminary in vitro results suggest that these triclosan analogs have potent antimalarial activity and represent apromising new treatment strategy on further development.


Sign in / Sign up

Export Citation Format

Share Document