Cooperative regulation of GSK-3 by muscarinic and PDGF receptors is associated with airway myocyte proliferation

2007 ◽  
Vol 293 (5) ◽  
pp. L1348-L1358 ◽  
Author(s):  
Reinoud Gosens ◽  
Gordon Dueck ◽  
Edward Rector ◽  
Raquel O. Nunes ◽  
William T. Gerthoffer ◽  
...  

Muscarinic receptors and platelet-derived growth factor (PDGF) receptors synergistically induce proliferation of airway smooth muscle (ASM), but the pathways that regulate these effects are not yet completely identified. We hypothesized that glycogen synthase kinase-3 (GSK-3), a kinase that represses several promitogenic signaling pathways in its unphosphorylated form, is cooperatively inhibited by PDGF and muscarinic receptors in immortalized human ASM cell lines. PDGF or methacholine alone induced rapid GSK-3 phosphorylation. This phosphorylation was sustained only for PDGF; however, methacholine potentiated PDGF-induced sustained GSK-3 phosphorylation. Synergistic effects of methacholine also were observed on PDGF-induced retinoblastoma protein (Rb) phosphorylation and cell proliferation. Suppression of GSK-3 inhibitory function using SB 216763 also augmented PDGF-induced Rb phosphorylation and cell cycle progression; this synergy was similar in magnitude to that seen for methacholine with PDGF. GSK-3 phosphorylation induced by methacholine required PKC, since it was abolished by GF 109203X and Gö 6976; however, inhibition of PKC had no effect on cell responses to PDGF. PKC inhibition also specifically abolished the synergistic effect of methacholine on PDGF-induced GSK-3 phosphorylation and cell proliferation. Collectively, these results show that GSK-3 plays a key repressive role in ASM cell proliferation. Moreover, muscarinic receptors mediate PKC-dependent GSK-3 inhibition, and this appears to be a primary mechanism underpinning augmentation of PDGF-induced cell growth.

2016 ◽  
Vol 36 (20) ◽  
pp. 2568-2582 ◽  
Author(s):  
Zonghui Ding ◽  
Yue Liu ◽  
Valentina Rubio ◽  
Jinjie He ◽  
Laurie J. Minze ◽  
...  

OLA1, an Obg-family GTPase, has been implicated in eukaryotic initiation factor 2 (eIF2)-mediated translational control, but its physiological functions remain obscure. Here we report that mouse embryos lacking OLA1 have stunted growth, delayed development leading to immature organs—especially lungs—at birth, and frequent perinatal lethality. Proliferation of primaryOla1−/−mouse embryonic fibroblasts (MEFs) is impaired due to defective cell cycle progression, associated with reduced cyclins D1 and E1, attenuated Rb phosphorylation, and increased p21Cip1/Waf1. Accumulation of p21 inOla1−/−MEFs is due to enhanced mRNA translation and can be prevented by either reconstitution of OLA1 expression or treatment with an eIF2α dephosphorylation inhibitor, suggesting that OLA1 regulates p21 through a translational mechanism involving eIF2. With immunohistochemistry, overexpression of p21 protein was detected in Ola1-null embryos with reduced cell proliferation. Moreover, we have generatedp21−/−Ola1−/−mice and found that knockout of p21 can partially rescue the growth retardation defect ofOla1−/−embryos but fails to rescue them from developmental delay and the lethality. These data demonstrate, for the first time, that OLA1 is required for normal progression of mammalian development. OLA1 plays an important role in promoting cell proliferation at least in part through suppression of p21 and organogenesis via factors yet to be discovered.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Deepak Bhatia ◽  
Roslin J. Thoppil ◽  
Animesh Mandal ◽  
Karishma A. Samtani ◽  
Altaf S. Darvesh ◽  
...  

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, and chemoprevention represents a viable approach in lowering the mortality of this disease. Pomegranate fruit, an abundant source of anti-inflammatory phytochemicals, is gaining tremendous attention for its wide-spectrum health benefits. We previously reported that a characterized pomegranate emulsion (PE) prevents diethylnitrosamine (DENA)-induced rat hepatocarcinogenesis though inhibition of nuclear factor-kappaB (NF-κB). Since NF-κB concurrently induces Wnt/β-catenin signaling implicated in cell proliferation, cell survival, and apoptosis evasion, we examined antiproliferative, apoptosis-inducing and Wnt/β-catenin signaling-modulatory mechanisms of PE during DENA rat hepatocarcinogenesis. PE (1 or 10 g/kg) was administered 4 weeks before and 18 weeks following DENA exposure. There was a significant increase in hepatic proliferation (proliferating cell nuclear antigen) and alteration in cell cycle progression (cyclin D1) due to DENA treatment, and PE dose dependently reversed these effects. PE substantially induced apoptosis by upregulating proapoptotic protein Bax and downregulating antiapoptotic protein Bcl-2. PE dose dependently reduced hepaticβ-catenin and augmented glycogen synthase kinase-3βexpression. Our study provides evidence that pomegranate phytochemicals exert chemoprevention of hepatic cancer through antiproliferative and proapoptotic mechanisms by modulating Wnt/β-catenin signaling. PE, thus, targets two interconnected molecular circuits (canonical NF-κB and Wnt/β-catenin pathways) to exert chemoprevention of HCC.


2019 ◽  
Vol 316 (1) ◽  
pp. E135-E144 ◽  
Author(s):  
Xin Zhao ◽  
Yili Xu ◽  
Ya Wu ◽  
Hui Zhang ◽  
Houxia Shi ◽  
...  

During pregnancy, maternal pancreatic β-cells undergo a compensatory expansion in response to the state of insulin resistance, where prolactin (PRL) plays a major role. Retinoblastoma protein (Rb) has been shown to critically regulate islet proliferation and function. The aim of the study was to explore the role of Rb in β-cell mass expansion during pregnancy. Expression of pocket protein family and E2Fs were examined in mouse islets during pregnancy and in insulinoma cells (INS-1) stimulated by PRL. PRL-stimulated INS-1 cells were used to explore the signaling pathway that regulates Rb downstream of the PRL receptor. Pancreas-specific Rb-knockout (Rb-KO) mice were assessed to evaluate the in vivo function of Rb in β-cell proliferation during pregnancy. During pregnancy, expression of Rb, phospho-Rb (p-Rb), p107, and E2F1 increased, while p130 decreased in maternal islets. With PRL stimulation, induction of Rb expression occurred mainly in the nucleus, while p-Rb was predominantly in the cytoplasm. Inhibition of STAT5 significantly restrained the expression of CDK4, Rb, p-Rb, and E2F1 in PRL-stimulated INS-1 cells with attenuation in cell cycle progression. Reduction of Rb phosphorylation by CDK4 inhibition blocked PRL-mediated proliferation of INS-1 cells. On the other hand, knockdown of Rb using siRNA led to an induction in E2F1 leading to cell cycle progression from G1 to S and G2/M phase, similar to the effects of PRL-mediated induction of p-Rb that led to cell proliferation. With Rb knockdown, PRL did not lead to further increase in cell cycle progression. Similarly, while Rb-KO pregnant mice displayed better glucose tolerance and higher insulin secretion, they had similar β-cell mass and proliferation to wild-type pregnant controls, supporting the essential role of Rb suppression in augmenting β-cell proliferation during pregnancy. Rb-E2F1 regulation plays a pivotal role in PRL-stimulated β-cell proliferation. PRL promotes Rb phosphorylation and E2F1 upregulation via STAT5-cyclin D/CDK4 pathway during pregnancy.


2007 ◽  
Vol 30 (4) ◽  
pp. 79
Author(s):  
A D Durbin ◽  
G R Somers ◽  
M Forrester ◽  
G E Hannigan ◽  
D Malkin

Background: Integrin-linked kinase (ILK) is a potent intracellular kinase involved in the regulation of multiple proliferation and survival kinases, including protein kinase B/Akt, glycogen synthase kinase-3β (GSK3β) and extracellular signal-regulated kinases 1 and 2 (ERK1/2). Evidence suggests ILK is overexpressed and acts oncogenically in a wide variety of primary tumors and genetic models, resulting in induction of tumor cell proliferation, migration, adhesion and angiogenic behaviours. Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of childhood. Histological subclassification of RMS yields two major variants, embryonal (ERMS) and alveolar (ARMS). ERMS, as well as multiple other tumors including breast and lung carcinoma, are commonly associated with loss of heterozygosity at 11p15.5, a region harboring the ILK locus. Methods: We utilized cell culture and primary tumors to examine the expression and function of ILK. Results: We demonstrate differential expression of ILK between ERMS and ARMS tumors in vitro and in vivo. RNAi to ILK induces potent gene silencing, with decreases in the phosphorylation of multiple ILK targets. ILK silencing induced inhibition of ARMS, and a contrasting potent stimulation of ERMS cell growth in survival and proliferation assays. These effects were reversed by adenoviral overexpression of ILK in multiple RMS and other tumor cell lines. Moreover, ILK silencing has multiple signaling effects, including induction of cell cycle progression through bmi-1and p16INK4a in ERMS with repression in ARMS, and phosphorylation of c-Jun NH2 terminal kinase (JNK) and c-Jun in ERMS and repression in ARMS cells. Coupling of JNK inhibition with ILK knockdown in ERMS cells inverted the ILK knockdown phenotype, resulting in a significant loss of cell proliferation. Conclusions: Together, these data confirm the oncogenic role of ILK in alveolar rhabdomyosarcoma, and suggest a novel tumor-suppressive role for ILK signaling in embryonal rhabdomyosarcoma, mediated through the novel ILK target axis, JNK-c-Jun.


2021 ◽  
Vol 8 ◽  
Author(s):  
Luying Cui ◽  
Yang Qu ◽  
Hele Cai ◽  
Heng Wang ◽  
Junsheng Dong ◽  
...  

Meloxicam is a non-steroidal anti-inflammatory drug and has been used to relieve pain and control inflammation in cows with metritis and endometritis. Meloxicam has been found to be effective in inhibiting tissue or cell growth when it is used as an anti-inflammatory therapy. However, the influence of meloxicam on bovine endometrial regeneration has not been reported. This study was to research the effect of meloxicam (0.5 and 5 μM) on the proliferation of primary bovine endometrial epithelial cells (BEECs) stimulated by Escherichia coli lipopolysaccharide. The cell viability, cell cycle, and cell proliferation were evaluated by Cell Counting Kit-8, flow cytometry, and cell scratch test, respectively. The mRNA transcriptions of prostaglandin-endoperoxide synthase 1 (PTGS1) and PTGS2, Toll-like receptor 4, and proliferation factors were detected using quantitative reverse-transcription polymerase chain reaction. The activations of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/β-catenin pathways were determined using western blot and immunofluorescence. As a result, co-treatment of meloxicam and lipopolysaccharide inhibited (P < 0.05) the cell cycle progression and reduced (P < 0.05) the cell healing rate and the mRNA level of proliferation factors as compared with the cells treated with lipopolysaccharide alone. Meloxicam decreased (P < 0.05) the lipopolysaccharide-induced PTGS2 gene expression. Neither lipopolysaccharide nor meloxicam changed PTGS1 mRNA abundance (P > 0.05). Meloxicam inhibited (P < 0.05) the lipopolysaccharide-activated Wnt/β-catenin pathway by reducing (P < 0.05) the protein levels of β-catenin, c-Myc, cyclin D1, and glycogen synthase kinase-3β and prevented the lipopolysaccharide-induced β-catenin from entering the nucleus. Meloxicam suppressed (P < 0.05) the phosphorylation of PI3K and AKT. In conclusion, meloxicam alone did not influence the cell cycle progression or the cell proliferation in BEEC but caused cell cycle arrest and inhibited cell proliferation in lipopolysaccharide-stimulated BEEC. This inhibitory effect of meloxicam was probably mediated by Wnt/β-catenin and PI3K/AKT pathways.


2017 ◽  
Vol 28 (25) ◽  
pp. 3699-3708 ◽  
Author(s):  
Mohamad Rima ◽  
Marwa Daghsni ◽  
Anaïs Lopez ◽  
Ziad Fajloun ◽  
Lydie Lefrancois ◽  
...  

The β4 isoform of the β-subunits of voltage-gated calcium channel regulates cell proliferation and cell cycle progression. Herein we show that coexpression of the β4-subunit with actors of the canonical Wnt/β-catenin signaling pathway in a hepatoma cell line inhibits Wnt-responsive gene transcription and decreases cell division, in agreement with the role of the Wnt pathway in cell proliferation. β4-subunit–mediated inhibition of Wnt signaling is observed in the presence of LiCl, an inhibitor of glycogen synthase kinase (GSK3) that promotes β-catenin translocation to the nucleus. Expression of β4-subunit mutants that lost the ability to translocate to the nucleus has no effect on Wnt signaling, suggesting that β4-subunit inhibition of Wnt signaling occurs downstream from GSK3 and requires targeting of β4-subunit to the nucleus. β4-subunit coimmunoprecipitates with the TCF4 transcription factor and overexpression of TCF4 reverses the effect of β4-subunit on the Wnt pathway. We thus propose that the interaction of nuclear β4-subunit with TCF4 prevents β-catenin binding to TCF4 and leads to the inhibition of the Wnt-responsive gene transcription. Thereby, our results show that β4-subunit is a TCF4 repressor and therefore appears as an interesting candidate for the regulation of this pathway in neurons where β4-subunit is specifically expressed.


2021 ◽  
Vol 20 ◽  
Author(s):  
Rabih Roufayel ◽  
Rabih Mezher ◽  
Kenneth B. Storey

: Selected transcription factors have critical roles to play in organism survival by regulating the expression of genes that control the adaptations needed to handle stress conditions. The retinoblastoma (Rb) protein coupled with the E2F transcription factor family was demonstrated to have roles in controlling the cell cycle during freezing and associated environmental stresses (anoxia, dehydration). Rb phosphorylation or acetylation at different sites provide a mechanism for repressing cell proliferation that is under the control of E2F transcription factors in animals facing stresses that disrupt cellular energetics or cell volume controls. Other central regulators of the cell cycle including Cyclins, Cyclin dependent kinases (Cdks), and checkpoint proteins detect DNA damage or any improper replication, blocking further progression of cell cycle and interrupting cell proliferation. This review provides an insight into the molecular regulatory mechanisms of cell cycle control, focusing on Rb-E2F along with Cyclin-Cdk complexes typically involved in development and differentiation that need to be regulated in order to survive extreme cellular stress.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lionel Condé ◽  
Yulemi Gonzalez Quesada ◽  
Florence Bonnet-Magnaval ◽  
Rémy Beaujois ◽  
Luc DesGroseillers

AbstractBackgroundStaufen2 (STAU2) is an RNA binding protein involved in the posttranscriptional regulation of gene expression. In neurons, STAU2 is required to maintain the balance between differentiation and proliferation of neural stem cells through asymmetric cell division. However, the importance of controlling STAU2 expression for cell cycle progression is not clear in non-neuronal dividing cells. We recently showed that STAU2 transcription is inhibited in response to DNA-damage due to E2F1 displacement from theSTAU2gene promoter. We now study the regulation of STAU2 steady-state levels in unstressed cells and its consequence for cell proliferation.ResultsCRISPR/Cas9-mediated and RNAi-dependent STAU2 depletion in the non-transformed hTERT-RPE1 cells both facilitate cell proliferation suggesting that STAU2 expression influences pathway(s) linked to cell cycle controls. Such effects are not observed in the CRISPR STAU2-KO cancer HCT116 cells nor in the STAU2-RNAi-depleted HeLa cells. Interestingly, a physiological decrease in the steady-state level of STAU2 is controlled by caspases. This effect of peptidases is counterbalanced by the activity of the CHK1 pathway suggesting that STAU2 partial degradation/stabilization fines tune cell cycle progression in unstressed cells. A large-scale proteomic analysis using STAU2/biotinylase fusion protein identifies known STAU2 interactors involved in RNA translation, localization, splicing, or decay confirming the role of STAU2 in the posttranscriptional regulation of gene expression. In addition, several proteins found in the nucleolus, including proteins of the ribosome biogenesis pathway and of the DNA damage response, are found in close proximity to STAU2. Strikingly, many of these proteins are linked to the kinase CHK1 pathway, reinforcing the link between STAU2 functions and the CHK1 pathway. Indeed, inhibition of the CHK1 pathway for 4 h dissociates STAU2 from proteins involved in translation and RNA metabolism.ConclusionsThese results indicate that STAU2 is involved in pathway(s) that control(s) cell proliferation, likely via mechanisms of posttranscriptional regulation, ribonucleoprotein complex assembly, genome integrity and/or checkpoint controls. The mechanism by which STAU2 regulates cell growth likely involves caspases and the kinase CHK1 pathway.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Chen-Hua Dong ◽  
Tao Jiang ◽  
Hang Yin ◽  
Hu Song ◽  
Yi Zhang ◽  
...  

AbstractColorectal cancer is the second common cause of death worldwide. Lamin B2 (LMNB2) is involved in chromatin remodeling and the rupture and reorganization of nuclear membrane during mitosis, which is necessary for eukaryotic cell proliferation. However, the role of LMNB2 in colorectal cancer (CRC) is poorly understood. This study explored the biological functions of LMNB2 in the progression of colorectal cancer and explored the possible molecular mechanisms. We found that LMNB2 was significantly upregulated in primary colorectal cancer tissues and cell lines, compared with paired non-cancerous tissues and normal colorectal epithelium. The high expression of LMNB2 in colorectal cancer tissues is significantly related to the clinicopathological characteristics of the patients and the shorter overall and disease-free cumulative survival. Functional analysis, including CCK8 cell proliferation test, EdU proliferation test, colony formation analysis, nude mouse xenograft, cell cycle, and apoptosis analysis showed that LMNB2 significantly promotes cell proliferation by promoting cell cycle progression in vivo and in vitro. In addition, gene set enrichment analysis, luciferase report analysis, and CHIP analysis showed that LMNB2 promotes cell proliferation by regulating the p21 promoter, whereas LMNB2 has no effect on cell apoptosis. In summary, these findings not only indicate that LMNB2 promotes the proliferation of colorectal cancer by regulating p21-mediated cell cycle progression, but also suggest the potential value of LMNB2 as a clinical prognostic marker and molecular therapy target.


Sign in / Sign up

Export Citation Format

Share Document