High-intensity training induces EIB in rats through neuron transdifferentiation of adrenal medulla chromaffin cells

2013 ◽  
Vol 304 (9) ◽  
pp. L602-L612 ◽  
Author(s):  
Ruoxi He ◽  
Juntao Feng ◽  
Qiufen Xun ◽  
Qingwu Qin ◽  
Chengping Hu

A high prevalence of exercise-induced bronchoconstriction (EIB) can be found in elite athletes, but the underlying mechanisms remain elusive. Airway responsiveness, NGF and epinephrine (EPI) levels, and chromaffin cell structure in high- (HiTr) and moderate-intensity training (MoTr) rats with or without ovalbumin (OVA) sensitization were measured in a total of 120 male Sprague-Dawley rats. The expression of NGF-associated genes in rat adrenal medulla was tested. Both HiTr and OVA intervention significantly increased airway resistance to aerosolized methacholine measured by whole body plethysmography. HiTr significantly increased inflammatory reaction in the lung with a major increase in peribronchial lymphocyte infiltration, whereas OVA significantly increased the infiltration of various inflammatory cells with an over 10-fold increase in eosinophil level in bronchoalveolar lavage. Both HiTr and OVA intervention upregulated circulating NGF level and peripherin level in adrenal medulla, but downregulated phenylethanolamine N-methyl transferase level in adrenal medulla and circulating EPI level. HiTr + OVA and HiTr + ExhEx (exhaustive exercise) interventions significantly enhanced most of the HiTr effects. The elevated NGF level was significantly associated with neuronal conversion of adrenal medulla chromaffin cells (AMCC). The levels of p-Erk1/2, JMJD3, and Mash1 were significantly increased, but the levels of p-p38 and p-JNK were significantly decreased in adrenal medulla in HiTr and OVA rats. Injection of NGF antiserum and moderate-intensity training reversed these changes observed in HiTr and/or OVA rats. Our study suggests that NGF may play a vital role in the pathogenesis of EIB by inducing neuron transdifferentiation of AMCC via MAPK pathways and subsequently decreasing circulating EPI.

1958 ◽  
Vol 17 (2) ◽  
pp. 191-NP ◽  
Author(s):  
R. E. COUPLAND

SUMMARY The adrenaline and noradrenaline content of the adrenal medulla and medullary implants has been assessed by histochemical and assay techniques after the injection of insulin, reserpine, and choline 2:6-xylylether bromide (TM10) into Wistar and Sprague-Dawley strain rats. Insulin hypoglycaemia is without effect on implanted chromaffin cells, but reduces the adrenaline content of the intact adrenal. Reserpine reduces the catechol amine content of both normal and grafted chromaffin cells. TM10, given as a single intravenous injection, has no effect on either normal or implanted chromaffin cells.


2016 ◽  
Vol 37 (8) ◽  
pp. 2975-2986 ◽  
Author(s):  
Shannon Wowk ◽  
Kelly J Fagan ◽  
Yonglie Ma ◽  
Helen Nichol ◽  
Frederick Colbourne

Studies treating intracerebral hemorrhage (ICH) with therapeutic hypothermia (TH) have shown inconsistent benefits. We hypothesized that TH’s anti-inflammatory effects may be responsible as inflammatory cells are essential for removing degrading erythrocytes. Here, we subjected rats to a collagenase-induced striatal ICH followed by whole-body TH (∼33℃ for 11–72 h) or normothermia. We used X-ray fluorescence imaging to spatially quantify total and peri-hematoma iron three days post-injury. At three and seven days, we measured non-heme iron levels. Finally, hematoma volume was quantified on one, three, and seven days. In the injured hemisphere, total iron levels were elevated ( p < 0.001) with iron increasing in the peri-hematoma region ( p = 0.007). Non-heme iron increased from three to seven days (p < 0.001). TH had no effect on any measure of iron ( p ≥ 0.479). At one and three days, TH did not affect hematoma volume ( p ≥ 0.264); however, at seven days there was a four-fold increase in hematoma volume in 40% of treated animals ( p = 0.032). Thus, even when TH does not interfere with initial increases in total and non-heme iron or its containment, TH can cause re-bleeding post-treatment. This serious complication could partly account for the intermittent protection previously observed. This also raises serious concerns for clinical usage of TH for ICH.


2016 ◽  
Vol 230 (3) ◽  
pp. 309-323 ◽  
Author(s):  
Sushil K Mahata ◽  
Hong Zheng ◽  
Sumana Mahata ◽  
Xuefei Liu ◽  
Kaushik P Patel

One of the key mechanisms involved in sympathoexcitation in chronic heart failure (HF) is the activation of the adrenal glands. Impact of the elevated catecholamines on the hemodynamic parameters has been previously demonstrated. However, studies linking the structural effects of such overactivation with secretory performance and cell metabolism in the adrenomedullary chromaffin cells in vivo have not been previously reported. In this study, HF was induced in male Sprague-Dawley rats by ligation of the left coronary artery. Five weeks after surgery, cardiac function was assessed by ventricular hemodynamics. HF rats showed increased adrenal weight and adrenal catecholamine levels (norepinephrine, epinephrine and dopamine) compared with sham-operated rats. Rats with HF demonstrated increased small synaptic and dense core vesicle in splanchnic–adrenal synapses indicating trans-synaptic activation of catecholamine biosynthetic enzymes, increased endoplasmic reticulum and Golgi lumen width to meet the demand of increased catecholamine synthesis and release, and more mitochondria with dilated cristae and glycogen to accommodate for the increased energy demand for the increased biogenesis and exocytosis of catecholamines from the adrenal medulla. These findings suggest that increased trans-synaptic activation of the chromaffin cells within the adrenal medulla may lead to increased catecholamines in the circulation which in turn contributes to the enhanced neurohumoral drive, providing a unique mechanistic insight for enhanced catecholamine levels in plasma commonly observed in chronic HF condition.


Author(s):  
Itiziar Pagola ◽  
Javier S. Morales ◽  
Lidia B. Alejo ◽  
Olga Barcelo ◽  
Marta Montil ◽  
...  

AbstractThis study compared the effects of two supervised concurrent training interventions in breast cancer survivors with cancer-related fatigue at baseline. Twenty-three female breast cancer survivors (50±8 years) were randomized to a high- (n=13) or a moderate-intensity (n=10) training program. Both interventions lasted 16 weeks and included the same resistance exercises, but the aerobic component was supervised and more intense in the former (i.e., rating of perceived exertion of 7–8 vs. 6 on a 1–10 scale for the high and moderate-intensity intervention, respectively). The primary endpoint was fatigue perception. Endpoints were assessed at baseline and after 16 weeks. The p-value for statistical significance was set at 0.004 after Bonferroni correction for multiple comparisons. The high-intensity training program increased lower-limb muscle strength significantly (p=0.002) and tended to improve fatigue perception (p=0.006), waist circumference (p=0.013), neutrophil-to-lymphocyte ratio (p=0.028) and some quality of life items (p=0.011). Although the moderate-intensity training program did not provide such benefits in general (i.e., higher p-values for pre vs post-intervention comparisons), no significant differences were found between interventions (all p>0.004). Further research is needed to elucidate if the benefits provided by high-intensity concurrent training are superior to those elicited by moderate-intensity training in breast cancer survivors.


2000 ◽  
Vol 89 (6) ◽  
pp. 2463-2471 ◽  
Author(s):  
L. J. McCutcheon ◽  
R. J. Geor

Sweating responses were examined in five horses during a standardized exercise test (SET) in hot conditions (32–34°C, 45–55% relative humidity) during 8 wk of exercise training (5 days/wk) in moderate conditions (19–21°C, 45–55% relative humidity). SETs consisting of 7 km at 50% maximal O2 consumption, determined 1 wk before training day (TD) 0, were completed on a treadmill set at a 6° incline on TD0, 14, 28, 42, and 56. Mean maximal O2consumption, measured 2 days before each SET, increased 19% [TD0 to 42: 135 ± 5 (SE) to 161 ± 4 ml · kg−1 · min−1]. Peak sweating rate (SR) during exercise increased on TD14, 28, 42, and 56 compared with TD0, whereas SRs and sweat losses in recovery decreased by TD28. By TD56, end-exercise rectal and pulmonary artery temperature decreased by 0.9 ± 0.1 and 1.2 ± 0.1°C, respectively, and mean change in body mass during the SET decreased by 23% (TD0: 10.1 ± 0.9; TD56: 7.7 ± 0.3 kg). Sweat Na+concentration during exercise decreased, whereas sweat K+concentration increased, and values for Cl− concentration in sweat were unchanged. Moderate-intensity training in cool conditions resulted in a 1.6-fold increase in sweating sensitivity evident by 4 wk and a 0.7 ± 0.1°C decrease in sweating threshold after 8 wk during exercise in hot, dry conditions. Altered sweating responses contributed to improved heat dissipation during exercise and a lower end-exercise core temperature. Despite higher SRs for a given core temperature during exercise, decreases in recovery SRs result in an overall reduction in sweat fluid losses but no change in total sweat ion losses after training.


2015 ◽  
Vol 118 (9) ◽  
pp. 1172-1180 ◽  
Author(s):  
Jari-Joonas Eskelinen ◽  
Ilkka Heinonen ◽  
Eliisa Löyttyniemi ◽  
Virva Saunavaara ◽  
Anna Kirjavainen ◽  
...  

We tested the hypothesis that sprint interval training (SIT) causes larger improvements in glucose and free fatty acid uptake (FFAU) in lower and upper body muscles than moderate-intensity training (MIT). Twenty-eight healthy, untrained, middle-aged men were randomized into SIT ( n = 14, 4–6 × 30 s of all-out cycling/4 min recovery) and MIT groups [ n = 14, 40–60 min cycling at 60% of peak O2 uptake (V̇o2 peak)] and completed six training sessions within 2 wk. Pre- and postmeasurements included V̇o2 peak, whole body (M-value), muscle-specific insulin-stimulated glucose uptake (GU), and fasting FFAU measured with positron emission tomography in thigh [quadriceps femoris (QF) and hamstrings] and upper body (deltoids, biceps, and triceps brachii) muscles. V̇o2 peak and M-value improved significantly by 6 and 12% in SIT, and 3 and 8% in MIT, respectively,. GU increased significantly only in the QF, and there was no statistically significant difference between the training modes. GU increased in all four heads of QF in response to SIT, but only in the vasti muscles in response to MIT, whereas in rectus femoris the response was completely lacking. Training response in FFAU in QF was smaller and nonsignificant, but it also differed between the training modes in the rectus femoris. In conclusion, SIT and MIT increased insulin-stimulated GU only in the main working muscle QF and not in the upper body muscles. In addition, the biarticular rectus femoris did not respond to moderate-intensity training, reflecting most probably poor activation of it during moderate-intensity cycling.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Neng Tine Kartinah ◽  
Imelda Rosalyn Sianipar ◽  
Nafi’ah ◽  
Rabia

Background. Recently, high-intensity intermittent training (HIIT) appears to have the same beneficial effects or even superior to those of continuous moderate-intensity training (CMIT) on body fat mass reduction. Exercise may induce myokine secretion such as irisin, which plays a role as a mediator of beiging process, and thus might contribute as treatment of obesity. However, the effects of those exercise formulas on irisin level changes as beiging agent are not known. In addition, metabolic states may affect the irisin responses to those exercise formulas. Therefore, this study was aimed to determine the different effects of exercises using HIIT and CMIT on circulating and tissue irisin levels in normal and abnormal metabolic conditions (obese). Methods. Sixteen male Sprague-Dawley rats (8 weeks of age) were randomized to 4 groups according to training regimens (HIIT and CMIT) and metabolic conditions (normal and abnormal/obese). The groups are (1) HIIT on normal metabolic (n=4), (2) CMIT on normal metabolic (n=4), (3) HIIT on abnormal metabolic (n=4), and (4) CMIT on abnormal metabolic (n=4). Abnormal metabolic condition was induced with high fat diet (19% fat) for 8 weeks in obese rats. Irisin levels in serum, skeletal muscle, and white adipose tissue were evaluated by ELISA. Results. Serum irisin levels were shown significantly higher in normal metabolic compared to abnormal metabolic condition (P<0.001). The effect of interaction between metabolic condition and exercise formula was found (P<0.01) on adipose irisin levels. The effect of HIIT was shown significantly more effective on adipose irisin levels, compared with CMIT in abnormal metabolic conditions. However, no significant differences of skeletal muscle irisin levels were found in both normal and abnormal metabolic subjects (P>0.05). Regarding exercise formula, no different effects were found between HIIT and CMIT on skeletal muscle irisin levels in both metabolic conditions (P>0.05). The similar findings were observed in serum irisin levels (P>0.05). Conclusions. The exercise effects in abnormal metabolic condition might be more adaptable in maintaining the irisin levels in skeletal muscle and induce the irisin uptake from circulation into adipose tissue. In addition, HIIT might be more involved to induce irisin uptake into adipose tissue; thus it might have the significant role in beiging process. However, further research about how the HIIT formula affects the regulation mechanisms of irisin uptake into adipose tissue is still warranted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Roeland J. W. Middelbeek ◽  
Piryanka Motiani ◽  
Nina Brandt ◽  
Pasquale Nigro ◽  
Jia Zheng ◽  
...  

Abstract Background Short-term exercise training programs that consist of moderate intensity endurance training or high intensity interval training have become popular choices for healthy lifestyle modifications, with as little as two weeks of training being shown to improve cardiorespiratory fitness and whole-body glucose metabolism. An emerging concept in exercise biology is that exercise stimulates the release of cytokines and other factors into the blood that contribute to the beneficial effects of exercise on metabolism, but whether these factors behave similarly in response to moderate and high intensity short term training is not known. Here, we determined the effects of two short-term exercise training programs on the concentrations of select secreted cytokines and Klotho, a protein involved in anti-aging. Methods Healthy, sedentary men (n = 22) were randomized to moderate intensity training (MIT) or sprint intensity training (SIT) treatment groups. SIT consisted of 6 sessions over 2 weeks of 6 × 30 s all out cycle ergometer sprints with 4 min of recovery between sprints. MIT consisted of 6 sessions over 2 weeks of cycle ergometer exercise at 60% VO2peak, gradually increasing in duration from 40 to 60 min. Blood was taken before the intervention and 48 h after the last training session, and glucose uptake was measured using [18F]FDG‐PET/CT scanning. Cytokines were measured by multiplex and Klotho concentrations by ELISA. Results Both training protocols similarly increased VO2peak and decreased fat percentage and visceral fat (P < 0.05). MIT and SIT training programs both reduced the concentrations of IL-6, Hepatocyte Growth Factor (HGF) and Leptin. Interestingly, MIT, but not SIT increased monocyte chemoattractant protein-1 (MCP-1) concentrations, an exercise-induced cytokine, as well as Klotho concentrations. Conclusion Short-term exercise training at markedly different intensities similarly improves cardiovascular fitness but results in intensity-specific changes in cytokine responses to exercise.


Author(s):  
Gemma A.J. Kuijpers ◽  
Harvey B. Pollard

Exocytotic fusion of granules in the adrenal medulla chromaffin cell is triggered by a rise in the concentration of cytosolic Ca2+ upon cell activation. The protein synexin, annexin VII, was originally found in the adrenal medulla and has been shown to cause aggregation and to support fusion of chromaffin granules in a Ca2+-dependent manner. We have previously suggested that synexin may there fore play a role in the exocytotic fusion process. In order to obtain more structural information on synexin, we performed immuno-electron microscopy on frozen ultrathin sections of both isolated chromaffin granules and chromaffin cells.Chromaffin granules were isolated from bovine adrenal medulla, and synexin was isolated from bovine lung. Granules were incubated in the presence or absence of synexin (24 μg per mg granule protein) and Ca2+ (1 mM), which induces maximal granule aggregation, in 0.3M sucrose-40m MMES buffer(pH 6.0). Granules were pelleted, washed twice in buffer without synexin and fixed with 2% glutaraldehyde- 2% para formaldehyde in 0.1 M phosphate buffer (GA/PFA) for 30 min. Chromaffin cells were isolated and cultured for 3-5 days, and washed and incubated in Krebs solution with or without 20 uM nicotine. Cells were fixed 90 sec after on set of stimulation with GA/PFA for 30 min. Fixed granule or cell pellets were washed, infiltrated with 2.3 M sucrose in PBS, mounted and frozen in liquid N2.


Author(s):  
Xiangyu Liu ◽  
Xiong Xue ◽  
Junsheng Tian ◽  
Xuemei Qin ◽  
Shi Zhou ◽  
...  

The objectives of this study were to compare the antidepressant effects between endurance and resistance exercise for optimizing interventions and examine the metabolomic changes in different types of skeletal muscles in response to the exercise, using a rat model of chronic unpredictable mild stress (CUMS)-induced depression. There were 32 male Sprague-Dawley rats randomly divided into a control group (C) and 3 experimental groups: CUMS control (D), endurance exercise (E), and resistance exercise (R). Group E underwent 30 min treadmill running, and group R performed 8 rounds of ladder climbing, 5 sessions per week for 4 weeks. Body weight, sucrose preference, and open field tests were performed pre and post the intervention period for changes in depressant symptoms, and the gastrocnemius and soleus muscles were sampled after the intervention for metabolomic analysis using the 1H-NMR technique. The results showed that both types of exercise effectively improved the depression-like symptoms, and the endurance exercise appeared to have a better effect. The levels of 10 metabolites from the gastrocnemius and 13 metabolites from the soleus of group D were found to be significantly different from that of group C, and both types of exercise had a callback effect on these metabolites, indicating that a number of metabolic pathways were involved in the depression and responded to the exercise interventions.


Sign in / Sign up

Export Citation Format

Share Document