scholarly journals Dyslipidemia and the role of adipose tissue in early pregnancy in the BPH/5 mouse model for preeclampsia

2019 ◽  
Vol 317 (1) ◽  
pp. R49-R58 ◽  
Author(s):  
Dorien Reijnders ◽  
Kelsey N. Olson ◽  
Chin-Chi Liu ◽  
Kalie F. Beckers ◽  
Sujoy Ghosh ◽  
...  

The hypertensive pregnancy disorder preeclampsia (PE) is a leading cause of fetal and maternal morbidity/mortality. Obesity increases the risk to develop PE, presumably via the release of inflammatory mediators from the adipose tissue, but the exact etiology remains largely unknown. Using obese PE-like blood pressure high subline 5 (BPH/5) and lean gestational age-matched C57Bl6 mice, we aimed to obtain insight into differential reproductive white adipose tissue (rWAT) gene expression, circulating lipids and inflammation at the maternal-fetal interface during early pregnancy. In addition, we investigated the effect of 7 days 25% calorie restriction (CR) in early pregnancy on gene expression in rWAT and implantation sites. Compared with C57Bl6, female BPH/5 are dyslipidemic before pregnancy and show an amplification of rWAT mass, circulating cholesterol, free fatty acids, and triacylglycerol levels throughout pregnancy. RNA sequencing showed that pregnant BPH/5 mice have elevated gene enrichment in pathways related to inflammation and cholesterol biosynthesis at embryonic day ( e) 7.5. Expression of cholesterol-related HMGCS1, MVD, Cyp51a1, and DHCR was validated by quantitative reverse-transcription-polymerase chain reaction. CR during the first 7 days of pregnancy restored the relative mRNA expression of these genes to a level comparable to C57Bl6 pregnant females and reduced the expression of circulating leptin and proinflammatory prostaglandin synthase 2 in both rWAT and implantation sites in BPH/5 mice at e7.5. Our data suggest a possible role for rWAT in the dyslipidemic state and inflammatory uterine milieu that might underlie the pathogenesis of PE. Future studies should further address the physiological functioning of the adipose tissue in relation to PE-related pregnancy outcomes.

Reproduction ◽  
2017 ◽  
Vol 154 (6) ◽  
pp. 723-733 ◽  
Author(s):  
Huijuan Zhang ◽  
Guishuan Wang ◽  
Lin Liu ◽  
Xiaolin Liang ◽  
Yu Lin ◽  
...  

The chromatoid body (CB) is a specific cloud-like structure in the cytoplasm of haploid spermatids. Recent findings indicate that CB is identified as a male germ cell-specific RNA storage and processing center, but its function has remained elusive for decades. In somatic cells, KH-type splicing regulatory protein (KSRP) is involved in regulating gene expression and maturation of select microRNAs (miRNAs). However, the function of KSRP in spermatogenesis remains unclear. In this study, we showed that KSRP partly localizes in CB, as a component of CB. KSRP interacts with proteins (mouse VASA homolog (MVH), polyadenylate-binding protein 1 (PABP1) and polyadenylate-binding protein 2 (PABP2)), mRNAs (Tnp2 and Odf1) and microRNAs (microRNA-182) in mouse CB. Moreover, KSRP may regulate the integrity of CB via DDX5-miRNA-182 pathway. In addition, we found abnormal expressions of CB component in testes of Ksrp-knockout mice and of patients with hypospermatogenesis. Thus, our results provide mechanistic insight into the role of KSRP in spermatogenesis.


2007 ◽  
Vol 137 (1) ◽  
pp. 34-38 ◽  
Author(s):  
Bradford A. Woodworth ◽  
Rachel Wood ◽  
John E. Baatz ◽  
Rodney J. Schlosser

OBJECTIVE: To measure alterations in SPA1, A2, and D gene expression in various forms of inflammatory chronic rhinosinusitis (CRS). STUDY DESIGN AND SETTING: Sinus mucosal biopsies were performed in patients with allergic fungal rhinosinusitis (AFS), CRS with nasal polyposis, cystic fibrosis (CF), and controls. SP mRNA was measured with quantitative polymerase chain reaction. RESULTS: Patients with CF (n = 4) showed significantly increased SPA1 (82-fold), SPA2 (100-fold), and SPD (47-fold) mRNA ( P < 0.05) when compared with controls (n = 5). Patients with CRS with nasal polyposis (n = 5) also demonstrated elevated SPA1 (27-fold), SPA2 (13-fold), and SPD (13-fold). Patients with AFS (n = 7) had increased SPA1 (5-fold), SPA2 (9-fold), and SPD (17-fold), but were not statistically significant. CONCLUSION: SPA1, A2, and D are upregulated in various forms of CRS, but are significantly elevated in cystic fibrosis CRS. SIGNIFICANCE: Understanding the role of SPs in CRS will help develop novel treatment approaches for sinonasal pathoses.


2010 ◽  
Vol 135 (4) ◽  
pp. 291-302 ◽  
Author(s):  
Kaori Ando ◽  
Rebecca Grumet

Fruit development proceeds from cell division to expansion, maturation, and ripening. Expansion is critical for size, yield, and quality; however, this period of development has received little attention. We used 454-pyrosequencing to develop a cucumber (Cucumis sativus) fruit transcriptome, identify highly expressed transcripts, and characterize key functions during exponential fruit growth. The resulting 187,406 expressed sequence tags (ESTs) were assembled into 13,878 contigs. Quantitative real-time polymerase chain reaction (qRT-PCR) verification of differentially expressed genes from fruit of different ages, and high correlation in transcript frequency between replicates, indicated that number of reads/contig reflects transcript abundance. Putative homologs were identified in Arabidopsis thaliana for 89% of the contigs represented by at least 10 ESTs; another 4% had homologs in other species. The remainder had homologs only in cucurbit species. The most highly expressed contigs were strongly enriched for growth (aquaporins, vacuolar ATPase, phloem proteins, tubulins, actins, cell wall-associated, and hormone-related), lipid, latex, and defense-related homologs. These results provide a resource for gene expression analysis in cucumber, profile gene expression in rapidly growing fruit, and shed insight into an important, but poorly characterized, developmental stage influencing fruit yield and quality.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rachna Manek ◽  
Yao V. Zhang ◽  
Patricia Berthelette ◽  
Mahmud Hossain ◽  
Cathleen S. Cornell ◽  
...  

AbstractPhenylketonuria (PKU) is a genetic deficiency of phenylalanine hydroxylase (PAH) in liver resulting in blood phenylalanine (Phe) elevation and neurotoxicity. A pegylated phenylalanine ammonia lyase (PEG-PAL) metabolizing Phe into cinnamic acid was recently approved as treatment for PKU patients. A potentially one-time rAAV-based delivery of PAH gene into liver to convert Phe into tyrosine (Tyr), a normal way of Phe metabolism, has now also entered the clinic. To understand differences between these two Phe lowering strategies, we evaluated PAH and PAL expression in livers of PAHenu2 mice on brain and liver functions. Both lowered brain Phe and increased neurotransmitter levels and corrected animal behavior. However, PAL delivery required dose optimization, did not elevate brain Tyr levels and resulted in an immune response. The effect of hyperphenylalanemia on liver functions in PKU mice was assessed by transcriptome and proteomic analyses. We observed an elevation in Cyp4a10/14 proteins involved in lipid metabolism and upregulation of genes involved in cholesterol biosynthesis. Majority of the gene expression changes were corrected by PAH and PAL delivery though the role of these changes in PKU pathology is currently unclear. Taken together, here we show that blood Phe lowering strategy using PAH or PAL corrects both brain pathology as well as previously unknown lipid metabolism associated pathway changes in liver.


Biomeditsina ◽  
2019 ◽  
pp. 12-22
Author(s):  
N. V. Petrova

It is shown that the level of the Lep gene expression is a marker for B/Ks-Leprᵈᵇ/+ mice, which line serves as an optimal model for describing metabolic syndrome (MS) in preclinical studies. Mice were transplanted with cultured isogenic bone marrow cells (BMC) from heterozygous db/+ donors. The recipients were divided into two groups according to an early or advanced stage of MS development. We analyzed the expression of the Lep gene on the 3rd, 8th and 14th day following the administration of stem BMCs in the brain, liver and pancreas cells by polymerase chain reaction (PCR) in real time. The Lep gene expression was evaluated in terms of the number of cDNA copies. According to our data, leptin is a complete regulator of metabolic processes due to its effect on the hypothalamus, which, together with the hippocampus, controls the production of acetylcholine and insulin in the brain. We have proven the role of the Lep gene as a quantitative criterion for evaluating the effi cacy of a cell therapy in MS.


Endocrinology ◽  
2003 ◽  
Vol 144 (11) ◽  
pp. 4773-4782 ◽  
Author(s):  
R. C. Moraes ◽  
A. Blondet ◽  
K. Birkenkamp-Demtroeder ◽  
J. Tirard ◽  
T. F. Orntoft ◽  
...  

2018 ◽  
Vol 48 (1) ◽  
pp. 397-408 ◽  
Author(s):  
Ingrid  Felicidade ◽  
Daniele Sartori ◽  
Susan L.M. Coort ◽  
Simone Cristine Semprebon ◽  
Andressa Megumi Niwa ◽  
...  

Background/Aims: Compared with non-obese individuals, obese individuals commonly store more vitamin D in adipose tissue. VDR expression in adipose tissue can influence adipogenesis and is therefore a target pathway deserving further study. This study aims to assess the role of 1,25(OH)2D3 in human preadipocyte proliferation and differentiation. Methods: RTCA, MTT, and trypan blue assays were used to assess the effects of 1,25(OH)2D3 on the viability, proliferation, and adipogenic differentiation of SGBS cells. Cell cycle and apoptosis analyses were performed with flow cytometry, triglycerides were quantified, and RT-qPCR was used to assess gene expression. Results: We confirmed that the SGBS cell model is suitable for studying adipogenesis and demonstrated that the differentiation protocol induces cell maturation, thereby increasing the lipid content of cells independently of treatment. 1,25(OH)2D3 treatment had different effects according to the cell stage, indicating different modes of action driving proliferation and differentiation. In preadipocytes, 1,25(OH)2D3 induced G1 growth arrest at both tested concentrations without altering CDKN1A gene expression. Treatment with 100 nM 1,25(OH)2D3 also decreased MTT absorbance and the lipid concentration. Moreover, increased normalized cell index values and decreased metabolic activity were not induced by proliferation or apoptosis. Exposure to 100 nM 1,25(OH)2D3 induced VDR, CEBPA, and CEBPB expression, even in the preadipocyte stage. During adipogenesis, 1,25(OH)2D3 had limited effects on processes such as VDR and PPARG gene expression, but it upregulated CEBPA expression. Conclusions: We demonstrated for the first time that 1,25(OH)2D3 induces changes in preadipocytes, including VDR expression and growth arrest, and increases the lipid content in adipocytes treated for 16 days. Preadipocytes are important cells in adipose tissue homeostasis, and understanding the role of 1,25(OH)2D3 in adipogenesis is a crucial step in ensuring adequate vitamin D supplementation, especially for obese individuals.


2011 ◽  
Vol 43 (3) ◽  
pp. 161-173 ◽  
Author(s):  
Lydie Cheval ◽  
Fabien Pierrat ◽  
Carole Dossat ◽  
Mathieu Genete ◽  
Martine Imbert-Teboul ◽  
...  

To gain molecular insight into kidney function, we performed a high-resolution quantitative analysis of gene expression in glomeruli and nine different nephron segments dissected from mouse kidney using Serial Analysis of Gene Expression (SAGE). We also developed dedicated bioinformatics tools and databases to annotate mRNA tags as transcripts. Over 800,000 mRNA SAGE tags were sequenced corresponding to >20,000 different mRNA tags present at least twice in at least one library. Hierarchical clustering analysis of tags demonstrated similarities between the three anatomical subsegments of the proximal tubule, between the cortical and medullary segments of the thick ascending limb of Henle's loop, and between the three segments constituting the aldosterone-sensitive distal nephron segments, whereas the glomerulus and distal convoluted tubule clusterized independently. We also identified highly specific mRNA markers of each subgroup of nephron segments and of most nephron segments. Tag annotation also identified numbers of putative antisense mRNAs. This database constitutes a reference resource in which the quantitative expression of a given gene can be compared with that of other genes in the same nephron segment, or between different segments of the nephron. To illustrate possible applications of this database, we performed a deeper analysis of the glomerulus transcriptome that unexpectedly revealed expression of several ion and water carriers; within the glomerulus, they were found to be preferentially expressed in the parietal sheet. It also revealed the major role of the zinc finger transcription factor Wt1 in the specificity of gene expression in the glomerulus. Finally, functional annotation of glomerulus-specific transcripts suggested a high proliferation activity of glomerular cells. Immunolabeling for PCNA confirmed a high percentage of proliferating cells in the glomerulus parietal sheet.


2006 ◽  
Vol 189 (5) ◽  
pp. 1974-1982 ◽  
Author(s):  
Corinne L. Williams ◽  
Peggy A. Cotter

ABSTRACT The Bordetella BvgAS virulence control system is prototypical of phosphorelays that use a polydomain sensor and a response regulator to control gene expression in response to environmental cues. BvgAS controls the expression of at least three distinct phenotypic phases (Bvg−, Bvgi, and Bvg+) by differentially regulating the expression of at least four classes of genes. Among the loci regulated by BvgAS is bvgAS itself. We investigated the role of autoregulation in the ability of BvgAS to control multiple gene expression patterns in a temporal and steady-state manner by constructing Bordetella bronchiseptica strains in which the bvgAS promoter was replaced with constitutively active promoters. Our results show that positive autoregulation of bvgAS transcription is required for the temporal expression of multiple phenotypic phases that occurs in response to a shift from Bvg−-phase conditions to Bvg+-phase conditions. Autoregulation was also shown to contribute to steady-state regulation; it influences the sensitivity of the system in response to subtle differences in signal intensity. In addition, considered in relation to BvgA and BvgS activities demonstrated in vitro, our results provide insight into how BvgA and BvgS function mechanistically.


Sign in / Sign up

Export Citation Format

Share Document