Dorsomedial hypothalamic corticotropin-releasing factor mediation of exercise-induced anorexia

2005 ◽  
Vol 288 (6) ◽  
pp. R1800-R1805 ◽  
Author(s):  
Maiko Kawaguchi ◽  
Karen A. Scott ◽  
Timothy H. Moran ◽  
Sheng Bi

Running wheel access and resulting voluntary exercise alter food intake and reduce body weight. The neural mechanisms underlying these effects are unclear. In this study, we first assessed the effects of 7 days of running wheel access on food intake, body weight, and hypothalamic gene expression. We demonstrate that running wheel access significantly decreases food intake and body weight and results in a significant elevation of CRF mRNA expression in the dorsomedial hypothalamus (DMH) but not the paraventricular nucleus. Seven-day running wheel access also results in elevated arcuate nucleus and DMH neuropeptide Y gene expression. To assess a potential role for elevated DMH CRF activity in the activity-induced changes in food intake and body weight, we compared changes in food intake, body weight, and hypothalamic gene expression in rats receiving intracerebroventricular (ICV) CRF antagonist α-helical CRF or vehicle with or without access to running wheels. During a 4-day period of running wheel access, we found that exercise-induced reductions of food intake and body weight were significantly attenuated by ICV injection of the CRF antagonist. The effect on food intake was specific to a blockade of activity-induced changes in meal size. Central CRF antagonist injection further increased DMH CRF mRNA expression in exercised rats. Together, these data suggest that DMH CRF play a critical role in the anorexia resulting from increased voluntary exercise.

2011 ◽  
Vol 43 (4) ◽  
pp. 199-212 ◽  
Author(s):  
Scott A. Kelly ◽  
Derrick L. Nehrenberg ◽  
Kunjie Hua ◽  
Theodore Garland ◽  
Daniel Pomp

The regulation of body weight and composition is complex, simultaneously affected by genetic architecture, the environment, and their interactions. We sought to analyze the complex phenotypic relationships between voluntary exercise, food consumption, and changes in body weight and composition and simultaneously localize quantitative trait loci (QTL) controlling these traits. A large ( n = 815) murine advanced intercross line (G4) was created from a reciprocal cross between a high-running line and the inbred strain C57BL/6J. Body weight and composition (% fat, % lean) were measured at 4, 6, and 8 wk of age. After measurements at 8 wk of age, mice were given access to running wheels, during which food consumption was quantified and after which body weight and composition were assessed to evaluate exercise-induced changes. Phenotypic correlations indicated that the relationship between exercise and overall change in weight and adiposity depended on body composition before the initiation of exercise. Interval mapping revealed QTL for body weight, % fat, and % lean at 4, 6, and 8 wk of age. Furthermore, QTL were observed for food consumption and changes in weight, % fat, and % lean in response to short-term exercise. Here we provide some clarity for the relationship between weight loss, reduction in adiposity, food consumption, and exercise. Simultaneously, we reinforce the genetic basis for body weight and composition with some independent loci controlling growth at different ages. Finally, we present unique QTL providing insight regarding variation in weight loss and reduction in adiposity in response to exercise.


2016 ◽  
Vol 310 (10) ◽  
pp. G832-G843 ◽  
Author(s):  
Justin A. Fletcher ◽  
Melissa A. Linden ◽  
Ryan D. Sheldon ◽  
Grace M. Meers ◽  
E. Matthew Morris ◽  
...  

Exercise stimulates hepatic mitochondrial adaptations; however, the mechanisms remain largely unknown. Here we tested whether FGF21 plays an obligatory role in exercise induced hepatic mitochondrial adaptations by testing exercise responses in FGF21 knockout mice. FGF21 knockout (FGF21-KO) and wild-type (WT) mice (11–12 wk of age) had access to voluntary running wheels for exercise (EX) or remained sedentary for 8 wk. FGF21 deficiency resulted in greater body weight, adiposity, serum cholesterol, insulin, and glucose concentrations compared with WT mice ( P < 0.05). In addition, hepatic mitochondrial complete palmitate oxidation, β-hydroxyacyl-CoA dehydrogenase (β-HAD) activity, and nuclear content of PGC-1α were 30–50% lower in FGF21-KO mice compared with WT mice ( P < 0.01). EX effectively lowered body weight, adiposity, serum triglycerides, free fatty acids, and insulin and normalized mitochondrial complete palmitate oxidation in the FGF21-KO mice, whereas the reduced hepatic β-HAD activity and lowered nuclear content of PGC-1α in FGF21-KO mice were not restored by EX. In addition, EX increased hepatic CPT-1α mRNA expression and ACC phosphorylation (a marker of increased AMPK activity) and reduced hepatic triacylglycerol content in both genotypes. However, FGF21-KO mice displayed a lower EX-induced increase in the mRNA expression of the hepatic gluconeogenic gene, PEPCK, compared with WT. In conclusion, FGF21 does not appear necessary for exercise-induced systemic and hepatic mitochondrial adaptations, but the increased adiposity, hyperinsulinemia, and impairments in hepatic mitochondrial function induced by FGF21 deficiency can be partially rescued by daily wheel running exercise.


2011 ◽  
Vol 300 (6) ◽  
pp. R1459-R1467 ◽  
Author(s):  
Pei-Ting Chao ◽  
Chantelle E. Terrillion ◽  
Timothy H. Moran ◽  
Sheng Bi

We have previously demonstrated that running-wheel access normalizes the food intake and body weight of Otsuka Long-Evens Tokushima Fatty (OLETF) rats. Following 6 wk of running-wheel access beginning at 8 wk of age, the body weight of OLETF rats remains reduced, demonstrating a lasting effect on their phenotype. In contrast, access to a high-fat diet exacerbates the hyperphagia and obesity of OLETF rats. To determine whether diet modulates the long-term effects of exercise, we examined the effects of high-fat diet on food intake and body weight in OLETF rats that had prior access to running wheels for 4 wk. We found that 4 wk of running exercise significantly decreased food intake and body weight of OLETF rats. Consistent with prior results, 4 wk of exercise also produced long-lasting effects on food intake and body weight in OLETF rats fed a regular chow. When running wheels were relocked, OLETF rats stabilized at lower levels of body weight than sedentary OLETF rats. However, access to a high-fat diet offset these effects. When OLETF rats were switched to a high-fat diet following wheel relocking, they significantly increased food intake and body weight, so that they reached levels similar to those of sedentary OLETF rats fed a high-fat diet. Gene expression determination of hypothalamic neuropeptides revealed changes that appeared to be appropriate responses to the effects of diet and running exercise. Together, these results demonstrate that high-fat diet modulates the long-lasting effects of exercise on food intake and body weight in OLETF rats.


1993 ◽  
Vol 265 (3) ◽  
pp. R563-R567 ◽  
Author(s):  
A. J. Bhatia ◽  
G. N. Wade

During pregnancy or after experimental manipulations of ovarian hormone levels, Syrian hamsters exhibit changes in energy balance and body fat content without modifying their food intake. The present experiments determined whether fluctuations in voluntary exercise play a role in these changes in energy balance, as they appear to do in other species. As expected, pregnant hamsters maintained a constant level of food intake and lost approximately 40% of their body fat. These animals did not show the abrupt decrease in activity after mating that is seen in rats. Instead, they maintained their high, premating level of running wheel activity until the last 3 days of pregnancy. Similarly, ovariectomy and replacement therapy with estradiol or estradiol+progesterone caused substantial changes in energy balance in the absence of significant changes in food intake or running wheel activity. These findings indicate that, unlike rats, Syrian hamsters do not exhibit substantial changes in voluntary exercise during pregnancy or in response to manipulations of ovarian steroid levels. Therefore, neither changes in food intake nor in voluntary exercise play any important role in the pregnancy- or steroid-induced changes in energy balance in Syrian hamsters.


2020 ◽  
Vol 244 (3) ◽  
pp. 473-486 ◽  
Author(s):  
Tristan S Allemann ◽  
Gursimran K Dhamrait ◽  
Naomi J Fleury ◽  
Tamara N Abel ◽  
Prue H Hart ◽  
...  

In previous preclinical studies, low (non-burning) doses of UV radiation (UVR) limited weight gain and metabolic dysfunction in mice fed with a high-fat diet. Here, we explored the effects of low-dose UVR on physical activity and food intake and mechanistic pathways in interscapular brown adipose tissue (iBAT). Young adult C57Bl/6J male mice, housed as individuals, were fed a high-fat diet and exposed to low-dose UVR (sub-oedemal, 1 kJ/m2 UVB, twice-a-week) or ‘mock’ treatment, with or without running wheel access (2 h, for ‘moderate’ physical activity) immediately after phototherapy. There was no difference in distance run in mice exposed to UVR or mock-treated over 12 weeks of exposure to running wheels (P = 0.14). UVR (alone) did not significantly affect food intake, adiposity, or signs of glucose dysfunction. Access to running wheels increased food intake (after 10 weeks, P ≤ 0.02) and reduced gonadal white adipose tissue and iBAT mass (P ≤ 0.03). Body weight and hepatic steatosis were lowest in mice exposed to UVR with running wheel access. In the iBAT of mice exposed to UVR and running wheels, elevated Atgl, Cd36, Fasn, Igf1, Pparγ, and Ucp1 mRNAs and reduced CD11c on F4-80 + MHC class II+ macrophages were observed, while renal Sglt2 mRNA levels were increased, compared to high-fat diet alone (P ≤ 0.03). Blood levels of 25-hydroxyvitamin D were not increased by exposure to UVR and/or access to running wheels. In conclusion, when combined with physical activity, low-dose UVR may more effectively limit adiposity (specifically, body weight and hepatic steatosis) and modulate metabolic and immune pathways in iBAT.


2000 ◽  
Vol 279 (5) ◽  
pp. L857-L862 ◽  
Author(s):  
David N. Cornfield ◽  
Ernesto R. Resnik ◽  
Jean M. Herron ◽  
Steven H. Abman

Calcium-sensitive potassium (KCa) channels play a critical role in mediating perinatal pulmonary vasodilation. Because infants with persistent pulmonary hypertension of the newborn (PPHN) have blunted vasodilator responses to birth-related stimuli, we hypothesized that lung KCachannel gene expression is decreased in PPHN. To test this hypothesis, we measured KCa channel gene expression in distal lung homogenates from both fetal lambs with severe pulmonary hypertension caused by prolonged compression of the ductus arteriosus and age-matched, sham-operated animals (controls). After at least 9 days of compression of the ductus arteriosus, fetal lambs were killed. To determine lung KCa channel mRNA levels, primers were designed against the known sequence of the KCa channel and used in semiquantitative RT-PCR, with lung 18S rRNA content as an internal control. Compared to that in control lambs, lung KCa channel mRNA content in the PPHN group was reduced by 26 ± 6% ( P < 0.02), whereas lung voltage-gated K+ 2.1 mRNA content was unchanged. We conclude that lung KCa channel mRNA expression is decreased in an ovine model of PPHN. Decreased KCa channel gene expression may contribute to the abnormal pulmonary vascular reactivity associated with PPHN.


2019 ◽  
Vol 104 (3) ◽  
pp. 407-420 ◽  
Author(s):  
Hashim Islam ◽  
Brittany A. Edgett ◽  
Jacob T. Bonafiglia ◽  
Talya Shulman ◽  
Andrew Ma ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 796 ◽  
Author(s):  
Andrea Gille ◽  
Bojan Stojnic ◽  
Felix Derwenskus ◽  
Andreas Trautmann ◽  
Ulrike Schmid-Staiger ◽  
...  

Phaeodactylum tricornutum (P. tricornutum) comprise several lipophilic constituents with proposed anti-obesity and anti-diabetic properties. We investigated the effect of an ethanolic P. tricornutum extract (PTE) on energy metabolism in obesity-prone mice fed a high fat diet (HFD). Six- to eight-week-old male C57BL/6J mice were switched to HFD and, at the same time, received orally placebo or PTE (100 mg or 300 mg/kg body weight/day). Body weight, body composition, and food intake were monitored. After 26 days, blood and tissue samples were collected for biochemical, morphological, and gene expression analyses. PTE-supplemented mice accumulated fucoxanthin metabolites in adipose tissues and attained lower body weight gain, body fat content, weight of white adipose tissue (WAT) depots, and inguinal WAT adipocyte size than controls, independent of decreased food intake. PTE supplementation was associated with lower expression of Mest (a marker of fat tissue expandability) in WAT depots, lower gene expression related to lipid uptake and turnover in visceral WAT, increased expression of genes key to fatty acid oxidation and thermogenesis (Cpt1, Ucp1) in subcutaneous WAT, and signs of thermogenic activation including enhanced UCP1 protein in interscapular brown adipose tissue. In conclusion, these data show the potential of PTE to ameliorate HFD-induced obesity in vivo.


Sign in / Sign up

Export Citation Format

Share Document