Regional effect of naltrexone in the nucleus of the solitary tract in blockade of NPY-induced feeding

2000 ◽  
Vol 278 (2) ◽  
pp. R499-R503 ◽  
Author(s):  
C. M. Kotz ◽  
M. J. Glass ◽  
A. S. Levine ◽  
C. J. Billington

Naltrexone (NLTX) in the nucleus of the solitary tract (NTS) decreases feeding induced by neuropeptide Y (NPY) in the paraventricular nucleus (PVN). We sought to determine the NTS region most sensitive to NLTX blockade of PVN NPY-induced feeding. Male Sprague-Dawley rats were fitted with two cannulas; one in the PVN and one in a hindbrain region: caudal, medial, or rostral NTS or 1 mm outside the NTS. Animals received NLTX (0, 1, 3, 10, and 30 μg in 0.3 μl) into the hindbrain region just prior to PVN NPY (0.5 μg, 0.3 μl) or artificial cerebrospinal fluid (0.3 μl). Food intake was measured at 2 h following injection. PVN NPY stimulated feeding, and NLTX in the medial NTS significantly decreased NPY-induced feeding at 2 h, whereas administration of NLTX in the other hindbrain regions did not significantly influence PVN NPY induced feeding. These data suggest that opioid receptors in the medial NTS are most responsive to feeding signals originating in the PVN after NPY stimulation.

1994 ◽  
Vol 266 (1) ◽  
pp. R306-R313 ◽  
Author(s):  
T. Horn ◽  
P. M. Smith ◽  
B. E. McLaughlin ◽  
L. Bauce ◽  
G. S. Marks ◽  
...  

We have examined potential functions of nitric oxide (NO) within the paraventricular nucleus (PVN) in urethan-anesthetized male Sprague-Dawley rats. Initial experiments demonstrated microinjection of 50 pmol of the NO donor, sodium nitroprusside (SNP), directly into the PVN resulted in significant decreases in mean blood pressure (BP) (-3,312 +/- 1,189 mmHg/s over 300-s response time; P < 0.05). To determine whether such effects were attributable to SNP-induced NO release, NO was administered into PVN directly by bilateral microdialysis of NO-containing artificial cerebrospinal fluid (NO-aCSF), a process that results in delivery of approximately 50 pmol NO.PVN-1 x min-1. Such microdialysis resulted in significant decreases in BP (-5,121 +/- 817 mmHg/s over 1,200-s response time; P < 0.005), while aCSF microdialysis was without effect (1,298 +/- 1,071 mmHg/s over 1,200-s response time; P > 0.1). Amino acid concentrations were measured in dialysates collected during perfusion of the same PVN sites with either aCSF or NO-aCSF by high-performance liquid chromatography (HPLC) analysis. NO-aCSF induced significant increases in aspartate (aCSF 31 +/- 7 pmol/30 min; NO-aCSF 134 +/- 33 pmol/30 min; P < 0.05), glutamate (aCSF 36 +/- 5 pmol/30 min; NO-aCSF 417 +/- 108 pmol/30 min; P < 0.02), gamma-aminobutyric acid (aCSF 4.1 +/- 0.7 pmol/30 min; NO-aCSF 104 +/- 29 pmol/30 min; P < 0.02), and taurine (aCSF 34 +/- 3 pmol/30 min; NO-aCSF 117 +/- 24 pmol/30 min; P < 0.01) concentrations, while alanine, glutamine, and serine concentrations were unaffected.(ABSTRACT TRUNCATED AT 250 WORDS)


2007 ◽  
Vol 293 (3) ◽  
pp. R1022-R1026 ◽  
Author(s):  
Dolores F. Doane ◽  
Marcus A. Lawson ◽  
Jonathan R. Meade ◽  
Catherine M. Kotz ◽  
J. Lee Beverly

Food intake is stimulated following administration of orexin-A into the perifornical region of the lateral hypothalamus (LH/PFA). Orexin neurons originating in the LH/PFA interact with a number of hypothalamic systems known to influence food intake, including glutamatergic neurons. Glutamatergic systems in the LH/PFA were demonstrated to initiate feeding through N-methyl-d-aspartic acid (NMDA) receptors. Male Sprague-Dawley rats fitted with brain guide cannulas to the LH/PFA were used in two experiments. In the first experiment, a combination microdialysis/microinjection probe was used to deliver artificial cerebrospinal fluid (aCSF) or 500 pmol of orexin-A into the LH/PFA. Orexin-A increased interstitial glutamate to 143 ± 12% of baseline ( P < 0.05), which remained elevated over the 120-min collection period. In the second experiment, the NMDA receptor antagonist d-2-amino-5-phosphonopentanoic acid (d-AP5; 10 nmol) was administered before orexin-A. The orexin-induced increase in food intake (from 1.1 ± 0.4 to 3.2 ± 0.5 g, P < 0.05) during the first hour was absent in rats receiving d-AP5 + orexin-A (1.2 ± 0.5 g). There was no effect of d-AP5 alone on food intake. These data support glutamatergic systems in the LH/PFA mediating the feeding response to orexin-A through NMDA receptors.


2012 ◽  
Vol 303 (8) ◽  
pp. R850-R860 ◽  
Author(s):  
Miriam Goebel-Stengel ◽  
Andreas Stengel ◽  
Lixin Wang ◽  
Gordon Ohning ◽  
Yvette Taché ◽  
...  

Various molecular forms of CCK reduce food intake in rats. Although CCK-8 is the most studied form, we reported that CCK-58 is the only detectable endocrine peptide form in rats. We investigated the dark-phase rat chow intake pattern following injection of CCK-8 and CCK-58. Ad libitum-fed male Sprague-Dawley rats were intraperitoneally injected with CCK-8, CCK-58 (0.6, 1.8, and 5.2 nmol/kg), or vehicle. Food intake pattern was assessed during the dark phase using an automated weighing system that allowed continuous undisturbed monitoring of physiological eating behavior. Both CCK-8 and CCK-58 dose dependently reduced 1-h, dark-phase food intake, with an equimolar dose of 1.8 nmol being similarly effective (−49% and −44%). CCK-58 increased the latency to the first meal, whereas CCK-8 did not. The intermeal interval was reduced after CCK-8 (1.8 nmol/kg, −41%) but not after CCK-58. At this dose, CCK-8 increased the satiety ratio by 80% and CCK-58 by 160%, respectively, compared with vehicle. When behavior was assessed manually, CCK-8 reduced locomotor activity (−31%), whereas grooming behavior was increased (+59%). CCK-58 affected neither grooming nor locomotor activity. In conclusion, reduction of food intake by CCK-8 and CCK-58 is achieved by differential modulation of food intake microstructure and behavior. These data highlight the importance of studying the molecular forms of peptides that exist in vivo in tissue and circulation of the animal being studied.


Endocrinology ◽  
2008 ◽  
Vol 149 (9) ◽  
pp. 4329-4335 ◽  
Author(s):  
Edith Sánchez ◽  
Praful S. Singru ◽  
Runa Acharya ◽  
Monica Bodria ◽  
Csaba Fekete ◽  
...  

To explore the effect of refeeding on recovery of TRH gene expression in the hypothalamic paraventricular nucleus (PVN) and its correlation with the feeding-related neuropeptides in the arcuate nucleus (ARC), c-fos immunoreactivity (IR) in the PVN and ARC 2 h after refeeding and hypothalamic TRH, neuropeptide Y (NPY) and agouti-related protein (AGRP) mRNA levels 4, 12, and 24 h after refeeding were studied in Sprague-Dawley rats subjected to prolonged fasting. Despite rapid reactivation of proopiomelanocortin neurons by refeeding as demonstrated by c-fos IR in ARC α-MSH-IR neurons and ventral parvocellular subdivision PVN neurons, c-fos IR was present in only 9.7 ± 1.1% hypophysiotropic TRH neurons. Serum TSH levels remained suppressed 4 and 12 h after the start of refeeding, returning to fed levels after 24 h. Fasting reduced TRH mRNA compared with fed animals, and similar to TSH, remained suppressed at 4 and 12 h after refeeding, returning toward normal at 24 h. AGRP and NPY gene expression in the ARC were markedly elevated in fasting rats, AGRP mRNA returning to baseline levels 12 h after refeeding and NPY mRNA remaining persistently elevated even at 24 h. These data raise the possibility that refeeding-induced activation of melanocortin signaling exerts differential actions on its target neurons in the PVN, an early action directed at neurons that may be involved in satiety, and a later action on hypophysiotropic TRH neurons involved in energy expenditure, potentially mediated by sustained elevations in AGRP and NPY. This response may be an important homeostatic mechanism to allow replenishment of depleted energy stores associated with fasting.


1998 ◽  
Vol 274 (4) ◽  
pp. R1119-R1124 ◽  
Author(s):  
Shogo Sesoko ◽  
Hiromi Muratani ◽  
Masanobu Yamazato ◽  
Hiroshi Teruya ◽  
Shuichi Takishita ◽  
...  

The inhibitory action of α2-agonists on the cardiovascular neurons has been elucidated in the rostral ventrolateral medulla (RVLM) but not in the caudal ventrolateral medulla (CVLM). Our study aimed to clarify whether microinjection of clonidine into the CVLM elicits any cardiovascular effect and whether endogenous α2-adrenoceptor-mediated mechanisms contribute to the tonic activity of the CVLM neurons. In male Sprague-Dawley rats (7–9 wk old, 270–320 g) anesthetized with urethan, unilateral microinjection of 8 nmol of clonidine into the CVLM ( n = 10) increased mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) by 12.1 ± 1.8 mmHg (mean ± SE, P < 0.01) and 25.8 ± 4.8% ( P < 0.01), while heart rate (HR) remained unaltered. Unilateral microinjection of 2 nmol of SKF-86466, a selective blocker of the α2-adrenoceptors, into the CVLM ( n = 10) decreased MAP, HR, and RSNA (−11.6 ± 2.6 mmHg, −26 ± 7 beats/min, and −15.3 ± 1.7%, respectively, P < 0.01 for each). Artificial cerebrospinal fluid caused neither a cardiovascular effect nor a sympathetic response. Prior injection of SKF-86466 into the ipsilateral CVLM attenuated the effects of clonidine. Bilateral microinjection of muscimol into the RVLM abolished the effects of both clonidine and SKF-86466 injected into the CVLM. The pressor and sympathoexcitatory effects of clonidine injected into the CVLM suggest a neuroinhibitory action of the drug on the CVLM neurons. In addition,the depressor and sympathoinhibitory effects of SKF-86466 injected into the CVLM indicated that activation of α2-adrenoceptors by endogenous ligand inhibits CVLM neurons. The effects of clonidine and the α2-adrenoceptor antagonist in the CVLM require the integrity of the RVLM.


1982 ◽  
Vol 243 (1) ◽  
pp. R60-R64 ◽  
Author(s):  
R. L. Atkinson ◽  
E. L. Brent

Male Sprague-Dawley rats with a jejunoileal bypass ate 32% less in the 1st h of refeeding after an overnight fast than did sham-bypass rats. Fasted recipients injected intraperitoneally with 6-7 ml of bypass plasma also ate 32% less (P less than 0.001) during the 1st h of refeeding than did recipients of sham-bypass plasma, but subsequent intake was not significantly different. Rectal temperature, hematocrit, white blood cell count, and percent polymorphonuclear leukocytes were not different between bypass and sham-bypass rats. A test for aversive conditioning suggested that the effect of bypass plasma was not due to illness or discomfort. These data suggest that intestinal bypass produces a transferable humoral factor that suppresses food intake and that the effect is not due to illness or discomfort. If the decreased food intake in humans after intestinal bypass is due to a similar mechanism, the possibility exists that this humoral appetite-suppressant factor may be clinically useful in the treatment of morbid obesity.


2021 ◽  
Vol 10 ◽  
Author(s):  
Kazunari Kadokura ◽  
Tsuyoshi Tomita ◽  
Kohei Suruga

Abstract The fish paste product, fish balls ‘tsumire’, is a traditional type of Japanese food made from minced fish as well as imitation crab, kamaboko and hanpen. Although tsumire is known as a high-protein and low-fat food, there is a lack of scientific evidence on its health benefits. Hence, we aimed to investigate the effects of tsumire intake on organ weight and biomarker levels in Sprague–Dawley rats for 84 d as a preliminary study. Six-week-old male Sprague–Dawley rats were divided into two groups: group I, fed normal diets, and group II, fed normal diets with 5 % dried tsumire. Throughout the administration period, we monitored their body weight and food intake; at the end of this period, we measured their organ weight and analysed their blood biochemistry. No significant differences were observed with respect to body weight, food intake, organ weight and many biochemical parameters between the two groups. It was found that inorganic phosphorus and glucose levels were higher in group II rats than in group I rats. On the other hand, sodium, calcium, amylase and cholinesterase levels were significantly lower in group II than in group I. Interestingly, we found that the levels of aspartate aminotransferase, alanine transaminase, lactate dehydrogenase and leucine aminopeptidase in group II were significantly lower than in group I, and that other liver function parameters of group II tended to be lower than in group I. In conclusion, we consider that the Japanese traditional food, ‘tsumire,’ may be effective as a functional food for human health management worldwide.


2008 ◽  
Vol 1 (2) ◽  
pp. 109-116 ◽  
Author(s):  
Samir G. Sukkar ◽  
Franca Cella ◽  
Stefania Patriarca ◽  
Anna L. Furfaro ◽  
Francesca Abate ◽  
...  

1996 ◽  
Vol 270 (2) ◽  
pp. R342-R347 ◽  
Author(s):  
P. M. Smith ◽  
A. V. Ferguson

Extracellular single-unit recordings were obtained from area postrema neurons (AP), and peristimulus histograms were used to determine the effects of paraventricular nucleus (PVN) stimulation on these cells from anesthetized Sprague-Dawley rats. Of 91 AP cells tested, 30.8% responded to PVN stimulation with a short-latency (28.2 +/- 3.3 ms, mean +/- SE), short-duration (49.3 +/- 8.0 ms) excitation, whereas 8.6% were inhibited. In animals that had stimulation sites outside of PVN (non-PVN), only 4 of the 72 AP cells tested (5.6%) were influenced by stimulation. These excitatory effects of PVN stimulation on AP neurons were unaffected by V1-receptor blockade. Of 93 nucleus of the solitary tract (NTS) cells tested, 38.9% responded to PVN stimulation with a short-latency (18.5 +/- 2.4 ms), short-duration (48.8 +/- 9.6 ms) excitation and 22.2% with short-latency (20.75 +/- 4.1 ms), long-duration (204.4 +/- 44.9 ms) inhibitions. In contrast, non-PVN stimulation sites influenced only 19% of NTS neurons tested, all of which were excited. These data demonstrate that activation of PVN neurons elicits excitatory effects on the majority of AP neurons influenced. They further emphasize the potential significance of descending hypothalamic inputs in controlling neuronal activity in this circumventricular organ.


Sign in / Sign up

Export Citation Format

Share Document