scholarly journals Direct and indirect inhibition of the circadian clock protein Per1: effects on ENaC and blood pressure

2019 ◽  
Vol 316 (5) ◽  
pp. F807-F813 ◽  
Author(s):  
Abdel Alli ◽  
Ling Yu ◽  
Meaghan Holzworth ◽  
Jacob Richards ◽  
Kit-Yan Cheng ◽  
...  

Circadian rhythms govern physiological functions and are important for overall health. The molecular circadian clock comprises several transcription factors that mediate circadian control of physiological function, in part, by regulating gene expression in a tissue-specific manner. These connections are well established, but the underlying mechanisms are incompletely understood. The overall goal of this study was to examine the connection among the circadian clock protein Period 1 (Per1), epithelial Na+ channel (ENaC), and blood pressure (BP) using a multipronged approach. Using global Per1 knockout mice on a 129/sv background in combination with a high-salt diet plus mineralocorticoid treatment, we demonstrated that loss of Per1 in this setting is associated with protection from hypertension. Next, we used the ENaC inhibitor benzamil to demonstrate a role for ENaC in BP regulation and urinary Na+ excretion in 129/sv mice. We targeted Per1 indirectly using pharmacological inhibition of Per1 nuclear entry in vivo to demonstrate altered expression of known Per1 target genes as well as a BP-lowering effect in 129/sv mice. Finally, we directly inhibited Per1 via genetic knockdown in amphibian distal nephron cells to demonstrate, for the first time, that reduced Per1 expression is associated with decreased ENaC activity at the single channel level.

2012 ◽  
Vol 303 (7) ◽  
pp. F918-F927 ◽  
Author(s):  
Jacob Richards ◽  
Megan M. Greenlee ◽  
Lauren A. Jeffers ◽  
Kit-Yan Cheng ◽  
Laijing Guo ◽  
...  

Increasing evidence suggests that the circadian clock plays an important role in the control of renal function and blood pressure. We previously showed that the circadian clock protein Period (Per)1, positively regulates the expression of the rate limiting subunit of the renal epithelial sodium channel (αENaC), which contributes to blood pressure regulation. Casein kinases 1δ and 1ε (CK1δ/ε) are critical regulators of clock proteins. CK1δ/ε must phosphorylate the circadian clock protein Per1 in order for the latter to enter the nucleus. We used a commercially available CK1δ/ε inhibitor, PF670462, to test the effect of CK1δ/ε blockade and inhibited Per1 nuclear entry on αENaC in a model of the renal cortical collecting duct (mpkCCDc14 cells). CK1δ/ε blockade prevented Per1 and Clock from interacting with an E-box from the αENaC promoter. CK1δ/ε inhibition reduced αENaC mRNA levels by <60%. A similar decrease in αENaC mRNA was observed following siRNA-mediated CK1δ/ε knock-down. Inhibition of CK1δ/ε effectively prevented the transcriptional response of αENaC to aldosterone, suggesting an interaction between the circadian clock and aldosterone-mediated regulation of αENaC. CK1δ/ε inhibition significantly reduced αENaC but increased Caveolin-1 membrane protein levels; transepithelial current, a measure of ENaC activity, was decreased. Importantly, single channel analysis in amphibian renal cells demonstrated a dramatic decrease in the number of patches with observable ENaC current following CK1δ/ε inhibition. The present study shows for the first time that CK1δ/ε inhibition and impaired Per1 nuclear entry results in decreased αENaC expression and ENaC activity, providing further support for direct control of ENaC by the circadian clock.


2013 ◽  
Vol 305 (12) ◽  
pp. F1697-F1704 ◽  
Author(s):  
Jacob Richards ◽  
Kit-Yan Cheng ◽  
Sean All ◽  
George Skopis ◽  
Lauren Jeffers ◽  
...  

The circadian clock plays an important role in the regulation of physiological processes, including renal function and blood pressure. We have previously shown that the circadian protein period (Per)1 regulates the expression of multiple Na+ transport genes in the collecting duct, including the α-subunit of the renal epithelial Na+ channel. Consistent with this finding, Per1 knockout mice exhibit dramatically lower blood pressure than wild-type mice. We have also recently demonstrated the potential opposing actions of cryptochrome (Cry)2 on Per1 target genes. Recent work by others has demonstrated that Cry1/2 regulates aldosterone production through increased expression of the adrenal gland-specific rate-limiting enzyme 3β-dehydrogenase isomerase (3β-HSD). Therefore, we tested the hypothesis that Per1 plays a role in the regulation of aldosterone levels and renal Na+ retention. Using RNA silencing and pharmacological blockade of Per1 nuclear entry in the NCI-H295R human adrenal cell line, we showed that Per1 regulates 3β-HSD expression in vitro. These results were confirmed in vivo: mice with reduced levels of Per1 had decreased levels of plasma aldosterone and decreased mRNA expression of 3β-HSD. We postulated that mice with reduced Per1 would have a renal Na+-retaining defect. Indeed, metabolic cage experiments demonstrated that Per1 heterozygotes excreted more urinary Na+ compared with wild-type mice. Taken together, these data support the hypothesis that Per1 regulates aldosterone levels and that Per1 plays an integral role in the regulation of Na+ retention.


2015 ◽  
Vol 309 (11) ◽  
pp. F933-F942 ◽  
Author(s):  
Kristen Solocinski ◽  
Jacob Richards ◽  
Sean All ◽  
Kit-Yan Cheng ◽  
Syed J. Khundmiri ◽  
...  

We have previously demonstrated that the circadian clock protein period (Per)1 coordinately regulates multiple genes involved in Na+ reabsorption in renal collecting duct cells. Consistent with these results, Per1 knockout mice exhibit dramatically lower blood pressure than wild-type mice. The proximal tubule is responsible for a majority of Na+ reabsorption. Previous work has demonstrated that expression of Na+/H+ exchanger 3 (NHE3) oscillates with a circadian pattern and Na+-glucose cotransporter (SGLT)1 has been demonstrated to be a circadian target in the colon, but whether these target genes are regulated by Per1 has not been investigated in the kidney. The goal of the present study was to determine if Per1 regulates the expression of NHE3, SGLT1, and SGLT2 in the kidney. Pharmacological blockade of nuclear Per1 entry resulted in decreased mRNA expression of SGLT1 and NHE3 but not SGLT2 in the renal cortex of mice. Per1 small interfering RNA and pharmacological blockade of Per1 nuclear entry in human proximal tubule HK-2 cells yielded the same results. Examination of heterogeneous nuclear RNA suggested that the effects of Per1 on NHE3 and SGLT1 expression occurred at the level of transcription. Per1 and the circadian protein CLOCK were detected at promoters of NHE3 and SGLT1. Importantly, both membrane and intracellular protein levels of NHE3 and SGLT1 were decreased after blockade of nuclear Per1 entry. This effect was associated with reduced activity of Na+-K+-ATPase. These data demonstrate a role for Per1 in the transcriptional regulation of NHE3 and SGLT1 in the kidney.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2305
Author(s):  
Wan-Ju Yeh ◽  
Jung Ko ◽  
Wei-Yi Cheng ◽  
Hsin-Yi Yang

High blood pressure is a crucial risk factor for many cardiovascular diseases, and a diet rich in whole-grain foods may modulate blood pressure. This study investigated the effects of dehulled adlay consumption on blood pressure in vivo. We initially fed spontaneous hypertensive rats diets without (SHR group) or with 12 or 24% dehulled adlay (SHR + LA and SHR + HA groups), and discovered that it could limit blood pressure increases over a 12-week experimental period. Although we found no significant changes in plasma, heart, and kidney angiotensin-converting enzyme activities, both adlay-consuming groups had lower endothelin-1 and creatinine concentrations than the SHR group; the SHR + HA group also had lower aspartate aminotransferase and uric acid levels than the SHR group did. We later recruited 23 participants with overweight and obesity, and they consumed 60 g of dehulled adlay daily for a six-week experimental period. At the end of the study, we observed a significant decrease in the group’s systolic blood pressure (SBP), and the change in SBP was even more evident in participants with high baseline SBP. In conclusion, our results suggested that daily intake of dehulled adlay had beneficial effects in blood-pressure management. Future studies may further clarify the possible underlying mechanisms for the consuming of dehulled adlay as a beneficial dietary approach for people at risk of hypertension.


2017 ◽  
Vol 28 (6) ◽  
pp. 834-842 ◽  
Author(s):  
Amol Chaudhari ◽  
Richa Gupta ◽  
Sonal Patel ◽  
Nikkhil Velingkaar ◽  
Roman Kondratov

Insulin-like growth factor (IGF) signaling plays an important role in cell growth and proliferation and is implicated in regulation of cancer, metabolism, and aging. Here we report that IGF-1 level in blood and IGF-1 signaling demonstrates circadian rhythms. Circadian control occurs through cryptochromes (CRYs)—transcriptional repressors and components of the circadian clock. IGF-1 rhythms are disrupted in Cry-deficient mice, and IGF-1 level is reduced by 80% in these mice, which leads to reduced IGF signaling. In agreement, Cry-deficient mice have reduced body (∼30% reduction) and organ size. Down-regulation of IGF-1 upon Cry deficiency correlates with reduced Igf-1 mRNA expression in the liver and skeletal muscles. Igf-1 transcription is regulated through growth hormone–induced, JAK2 kinase–mediated phosphorylation of transcriptional factor STAT5B. The phosphorylation of STAT5B on the JAK2-dependent Y699 site is significantly reduced in the liver and skeletal muscles of Cry-deficient mice. At the same time, phosphorylation of JAK2 kinase was not reduced upon Cry deficiency, which places CRY activity downstream from JAK2. Thus CRYs link the circadian clock and JAK-STAT signaling through control of STAT5B phosphorylation, which provides the mechanism for circadian rhythms in IGF signaling in vivo.


2021 ◽  
Author(s):  
Jing Jin ◽  
Yumeng Liu ◽  
Jing Huang ◽  
Dong Zhang ◽  
Jian Ge ◽  
...  

Abstract Objective A variety of circadian patterns of blood pressure after ischemic stroke in patients with essential hypertension appear to be a potential risk of stroke recurrence, but the mechanism is still unclear. This study intends to reveal the changes in blood pressure rhythm and circadian clock protein expression levels in spontaneously hypertensive rats (SHR) after ischemia-reperfusion, and the relationship between the two. Methods Using the SHR middle cerebral artery occlusion experimental model, the systolic blood pressure was continuously monitored for 24 hours after the operation to observe the blood pressure rhythm. The rat tail vein blood was taken every 3h, and the serum CLOCK, BMAL1, PER1 and CRY1 protein expression levels were detected by Elisa. Pearson correlation analysis counted the relationship between SHR blood pressure rhythm and circadian clock protein fluctuation after ischemia-reperfusion. Results The proportion of abnormal blood pressure patterns in the SHR + tMCAO group was significantly higher than that in the SHR group, the serum CLOCK expression was relatively constant, and the circadian rhythm of BMAL1, PER1 and CRY1 protein expression changed significantly. Pearson analysis showed that PER1 protein level was negatively correlated with dipper (r = -0.565, P = 0.002) and extreme-dipper (r = -0.531, P = 0.001) blood pressure, and was significantly positively correlated with non-dipper blood pressure (r = 0.620, P < 0.001). Conclusion The rhythm pattern of blood pressure after ischemia-reperfusion in SHR is obviously disordered, and it is closely related to the regulation of Per1 gene.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Shuping Zhang ◽  
Alejandra Macias-Garcia ◽  
Jacob C Ulirsch ◽  
Jason Velazquez ◽  
Vincent L Butty ◽  
...  

Iron and heme play central roles in the production of red blood cells, but the underlying mechanisms remain incompletely understood. Heme-regulated eIF2α kinase (HRI) controls translation by phosphorylating eIF2α. Here, we investigate the global impact of iron, heme, and HRI on protein translation in vivo in murine primary erythroblasts using ribosome profiling. We validate the known role of HRI-mediated translational stimulation of integratedstressresponse mRNAs during iron deficiency in vivo. Moreover, we find that the translation of mRNAs encoding cytosolic and mitochondrial ribosomal proteins is substantially repressed by HRI during iron deficiency, causing a decrease in cytosolic and mitochondrial protein synthesis. The absence of HRI during iron deficiency elicits a prominent cytoplasmic unfolded protein response and impairs mitochondrial respiration. Importantly, ATF4 target genes are activated during iron deficiency to maintain mitochondrial function and to enable erythroid differentiation. We further identify GRB10 as a previously unappreciated regulator of terminal erythropoiesis.


2019 ◽  
Vol 316 (1) ◽  
pp. R50-R58 ◽  
Author(s):  
Lauren G. Douma ◽  
Kristen Solocinski ◽  
Meaghan R. Holzworth ◽  
G. Ryan Crislip ◽  
Sarah H. Masten ◽  
...  

The circadian clock is integral to the maintenance of daily rhythms of many physiological outputs, including blood pressure. Our laboratory has previously demonstrated the importance of the clock protein period 1 (PER1) in blood pressure regulation in male mice. Briefly, a high-salt diet (HS; 4% NaCl) plus injection with the long-acting mineralocorticoid deoxycorticosterone pivalate (DOCP) resulted in nondipping hypertension [<10% difference between night and day blood pressure (BP) in Per1-knockout (KO) mice but not in wild-type (WT) mice]. To date, there have been no studies that have examined the effect of a core circadian gene KO on BP rhythms in female mice. The goal of the present study was to determine whether female Per1-KO mice develop nondipping hypertension in response to HS/DOCP treatment. For the first time, we demonstrate that loss of the circadian clock protein PER1 in female mice does not significantly change mean arterial pressure (MAP) or the BP rhythm relative to female C57BL/6 WT control mice. Both WT and Per1-KO female mice experienced a significant increase in MAP in response to HS/DOCP. Importantly, however, both genotypes maintained a >10% dip in BP on HS/DOCP. This effect is distinct from the nondipping hypertension seen in male Per1-KO mice, demonstrating that the female sex appears to be protective against PER1-mediated nondipping hypertension in response to HS/DOCP. Together, these data suggest that PER1 acts in a sex-dependent manner in the regulation of cardiovascular rhythms.


2020 ◽  
Vol 41 (10) ◽  
pp. 1421-1431 ◽  
Author(s):  
Lu Chen ◽  
Yang Liu ◽  
Alexander Becher ◽  
Kristina Diepold ◽  
Evi Schmid ◽  
...  

Abstract The repurposing of existing drugs has emerged as an attractive additional strategy to the development of novel compounds in the fight against cancerous diseases. Inhibition of phosphodiesterase 5 (PDE5) has been claimed as a potential approach to target various cancer subtypes in recent years. However, data on the treatment of tumors with PDE5 inhibitors as well as the underlying mechanisms are as yet very scarce. Here, we report that treatment of tumor cells with low concentrations of Sildenafil was associated with decreased cancer cell proliferation and augmented apoptosis in vitro and resulted in impaired tumor growth in vivo. Notably, incubation of cancer cells with Sildenafil was associated with altered expression of HSP90 chaperone followed by degradation of protein kinase D2, a client protein previously reported to be involved in tumor growth. Furthermore, the involvement of low doses of PU-H71, an HSP90 inhibitor currently under clinical evaluation, in combination with low concentrations of Sildenafil, synergistically and negatively impacted on the viability of cancer cells in vivo. Taken together, our study suggests that repurposing of already approved drugs, alone or in combination with oncology-dedicated compounds, may represent a novel cancer therapeutic strategy.


2019 ◽  
Vol 116 (44) ◽  
pp. 22282-22287
Author(s):  
Ali Reza Saadatmand ◽  
Viviana Sramek ◽  
Silvio Weber ◽  
Daniel Finke ◽  
Matthias Dewenter ◽  
...  

Sympathetic activation of β-adrenoreceptors (β-AR) represents a hallmark in the development of heart failure (HF). However, little is known about the underlying mechanisms of gene regulation. In human ventricular myocardium from patients with end-stage HF, we found high levels of phosphorylated histone 3 at serine-28 (H3S28p). H3S28p was increased by inhibition of the catecholamine-sensitive protein phosphatase 1 and decreased by β-blocker pretreatment. By a series of in vitro and in vivo experiments, we show that the β-AR downstream protein kinase CaM kinase II (CaMKII) directly binds and phosphorylates H3S28. Whereas, in CaMKII-deficient myocytes, acute catecholaminergic stimulation resulted in some degree of H3S28p, sustained catecholaminergic stimulation almost entirely failed to induce H3S28p. Genome-wide analysis of CaMKII-mediated H3S28p in response to chronic β-AR stress by chromatin immunoprecipitation followed by massive genomic sequencing led to the identification of CaMKII-dependent H3S28p target genes. Forty percent of differentially H3S28p-enriched genomic regions were associated with differential, mostly increased expression of the nearest genes, pointing to CaMKII-dependent H3S28p as an activating histone mark. Remarkably, the adult hemoglobin genes showed an H3S28p enrichment close to their transcriptional start or end sites, which was associated with increased messenger RNA and protein expression. In summary, we demonstrate that chronic β-AR activation leads to CaMKII-mediated H3S28p in cardiomyocytes. Thus, H3S28p-dependent changes may play an unexpected role for cardiac hemoglobin regulation in the context of sympathetic activation. These data also imply that CaMKII may be a yet unrecognized stress-responsive regulator of hematopoesis.


Sign in / Sign up

Export Citation Format

Share Document