Effect of ambient temperature on protein breakdown during prolonged exercise

1988 ◽  
Vol 64 (2) ◽  
pp. 550-555 ◽  
Author(s):  
D. G. Dolny ◽  
P. W. Lemon

Male subjects (n = 8) cycled for 90 min in 5, 20, and 30 degrees C environments. Rectal (Tre), chest, and thigh temperatures, O2 consumption (VO2), respiratory exchange ratio (R), and venous concentrations of glucose, free fatty acids (FFA), urea N, lactic acid (LA), norepinephrine (NE), epinephrine (E), and cortisol (C) were measured before, during, and after exercise. Urea N excretion was measured in 72 h of nonexercise, in 72 h of exercise (exercise day + 2 post-exercise days) urine samples, and in exercise sweat. Calculated 72-h protein utilization (means +/- SE) was significantly greater (P less than 0.05) for the 5 (86.9 +/- 27.1 g) and 20 (82.9 +/- 22.7 g) compared with 30 degrees C (34.01 +/- 19.1 g) trial. Regardless of ambient temperature exercise increased the venous concentration of C, E, and NE. These catabolic hormones were greatest in 5, lowest in 20, and intermediate in 30 degrees C. Exercise Tre and VO2 were greatest in the 30 degrees C environment. Venous FFA concentration was significantly higher and R significantly lower in 5 vs. 20 or 30 degrees C, and venous LA concentration was significantly greater in 30 vs. 20 or 5 degrees C. Although these results indicate that exercise protein breakdown is affected by ambient temperatures, the mechanism of action is not due solely to circulating NE, E, and C. Differences in venous FFA and LA across environmental temperatures suggest that alterations in carbohydrate and fat metabolism may have contributed to the observed variable protein utilization.

1963 ◽  
Vol 60 (2) ◽  
pp. 183-193 ◽  
Author(s):  
E. Eyal

1. A comparison was made between the skin temperature, humidity and temperature within and on the surface of the fleece of unshorn and shorn sheep. This study was conducted during various seasons of the year, at different environmental temperatures, while sheep were maintained in the shade or subjected to direct sunlight.2. Accompanying the rise of ambient temperature (in the shade) from 10 to 43° C. there was an increase in skin temperature from 34 to 40° C. and from 28 to 40° C. of the unshorn and shorn sheep, respectively.3. The relationship between the rise in skin temperature and that of ambient temperature was not linear, but showed a stepwise pattern in which the ‘breaks’ occurred at similar environmental temperatures for both groups, although skin temperatures of shorn sheep were lower than the unshorn.4. The diurnal change in skin temperature of the shorn sheep was similar to that of the ambient temperature. The decrease in skin temperature of unshorn sheep sometimes lagged behind the fall in environmental temperature. The seasonal variations between summer and winter were more significant in shorn than in unshorn sheep.5. Fleece surface temperatures measured at the same ambient temperatures ranged between 13 and42° C. and 16·5–39·5° C. in the unshorn and shorn sheep, respectively. In the break points of the rise in skin temperature, there occurred a drop in temperature gradients between the skin and fleece surface. This probably indicates a rise in thermal conductivity of the fleece at these points.6. The temperature gradient per unit of fleece thickness is inversely related to the depth of fleece and is greater the nearer to the skin.7. With exposure to the sun, skin temperatures of both groups greatly increased and occasionally reached 47° C. Under these conditions the differences between shorn and unshorn groups were not consistent.8. Fleece temperatures of unshorn sheep increased greatly upon exposure to the sun. The maximal temperatures were recorded midway between the fleece surface and skin. These temperatures generally reached 55° C. and sometimes even exceeded 60° C.9. At ambient temperatures of 30–35° C. the vapour pressure close to the skin of unshorn sheep ranged between 35–40 mm. Hg. With shorn sheep, however, the vapour pressure close to the skin was similar to that of the environment. In Yotvata there was a rise in vapour pressure close to the skin when the ambient temperature increased to 40–43° C. This rise in humidity was paralleled by a rise of vapour pressure throughout the wool. It was not linear but rather showed a ‘step-wise’ pattern.10. The vapour pressure in fleece and near the skin of sheep subjected to direct sunlight increased considerably (up to 80 mm. Hg). This rise showed a wave-like curve with various degrees of persistency. Appearance of fluid on the skin of Awassi sheep was observed on several occasions.


1979 ◽  
Vol 47 (3) ◽  
pp. 591-597 ◽  
Author(s):  
T. V. McCaffrey ◽  
R. D. Wurster ◽  
H. K. Jacobs ◽  
D. E. Euler ◽  
G. S. Geis

In five male subjects tympanic membrane temperature (Tty), rectal temperature, skin temperatures at 12 sites were simultaneously recorded. Local sweating rate was measured at six sites using resistance hygrometry. After steady-state sweating was established, the lower body was heated at ambient temperatures of 50, 60, 70, and 80 degrees C or cooled at an ambient temperature of 29 degrees C while the upper body remained at a constant ambient temperature. During lower body heating or cooling, Tty was maintained constant by the drinking of cold (10 degrees C) or warm (45 degrees C) water. Sweating rate on both upper and lower body surfaces was proportional to lower body skin temperature. The regression coefficients for sweating rate versus mean lower body skin temperature varied from 0.03 to 0.09 mg/cm2.min. degrees C between subjects, but were not significantly different from each other (P greater than 0.05). This study demonstrates an influence of cutaneous thermoreceptors on sweating rate under steady-state conditions.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2286
Author(s):  
Jan Kominek ◽  
Martin Zachar ◽  
Michal Guzej ◽  
Erik Bartuli ◽  
Petr Kotrbacek

Miniaturization of electronic devices leads to new heat dissipation challenges and traditional cooling methods need to be replaced by new better ones. Polymer heat sinks may, thanks to their unique properties, replace standardly used heat sink materials in certain applications, especially in applications with high ambient temperature. Polymers natively dispose of high surface emissivity in comparison with glossy metals. This high emissivity allows a larger amount of heat to be dissipated to the ambient with the fourth power of its absolute surface temperature. This paper shows the change in radiative and convective heat transfer from polymer heat sinks used in different ambient temperatures. Furthermore, the observed polymer heat sinks have differently oriented graphite filler caused by their molding process differences, therefore their thermal conductivity anisotropies and overall cooling efficiencies also differ. Furthermore, it is also shown that a high radiative heat transfer leads to minimizing these cooling efficiency differences between these polymer heat sinks of the same geometry. The measurements were conducted at HEATLAB, Brno University of Technology.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 225
Author(s):  
Ines Mack ◽  
Mike Sharland ◽  
Janneke M. Brussee ◽  
Sophia Rehm ◽  
Katharina Rentsch ◽  
...  

Amoxicillin-clavulanic acid (AMC) belongs to the WHO Essential Medicines List for children, but for optimal antimicrobial effectiveness, reconstituted dry powder suspensions need to be stored in a refrigerated environment. Many patients in low- and middle-income countries who are sold AMC suspensions would be expected not to keep to the specified storage conditions. We aimed to assess the stability of both ingredients in liquid formulations and dispersible tablets, combined with nationally representative data on access to appropriate storage. Degradation of amoxicillin (AMX) and clavulanic-acid (CLA) was measured in suspensions and dispersible tablets commercially available in Switzerland at different ambient temperatures (8 °C vs. 28 °C over 7 days, and 23 °C vs. 28 °C over 24 h, respectively). Data on access to refrigeration and electricity were assessed from the USAID-funded Demographic and Health Survey program. In suspensions, CLA degraded to a maximum of 12.9% (95% CI −55.7%, +29.9%) at 8°C and 72.3% (95% CI −82.8%, −61.8%) at a 28 °C ambient temperature during an observation period of 7 days. Dispersible tablets were observed during 24 h and CLA degraded to 15.4% (95% CI −51.9%, +21.2%) at 23 °C and 21.7% (−28.2%, −15.1%) at a 28 °C ambient temperature. There is relevant degradation of CLA in suspensions during a 7-day course. To overcome the stability challenges for all active components, durable child-appropriate formulations are needed. Until then, prescribers of AMC suspensions or pharmacists who sell the drug need to create awareness for the importance of proper storage conditions regarding effectiveness of both antibiotics and this recommendation should be reflected in the WHO Essential Medicines List for children.


1975 ◽  
Vol 53 (6) ◽  
pp. 679-685 ◽  
Author(s):  
J. B. Holter ◽  
W. E. Urban Jr. ◽  
H. H. Hayes ◽  
H. Silver ◽  
H. R. Skutt

Six adult white-tailed deer (Odocoileus virginianus borealis) were exposed to 165 periods of 12 consecutive hours of controlled constant ambient temperature in an indirect respiration calorimeter. Temperatures among periods varied from 38 to 0 (summer) or to −20C (fall, winter, spring). Traits measured were energy expenditure (metabolic rate), proportion of time spent standing, heart rate, and body temperature, the latter two using telemetry. The deer used body posture extensively as a means of maintaining body energy equilibrium. Energy expenditure was increased at low ambient temperature to combat cold and to maintain relatively constant body temperature. Changes in heart rate paralleled changes in energy expenditure. In a limited number of comparisons, slight wind chill was combatted through behavioral means with no effect on energy expenditure. The reaction of deer to varying ambient temperatures was not the same in all seasons of the year.


2021 ◽  
Vol 105 (1) ◽  
pp. 119-134
Author(s):  
Jana Zimáková ◽  
Petr Baca ◽  
Martin Langer ◽  
Tomáš Binar

This work deals with lead-acid batteries, their properties and individual types that are available on the market. The temperature dependences of the battery parameters at different ambient temperatures and at different discharging and charging modes are measured. 6 batteries are tested at different charging currents, which provides information about their behavior both during discharge and at the time of charging. During the experiments, testing is not only performed at room temperature, but the batteries are also exposed to high temperatures up to 75 °C.


1957 ◽  
Vol 188 (3) ◽  
pp. 435-438 ◽  
Author(s):  
M. J. Fregly ◽  
N. B. Marshall ◽  
J. Mayer

Goldthioglucose-obese mice cannot adjust their food intake to meet the increased energy requirements due to cold. At all ambient temperatures above 15°C the spontaneous running activity of these animals is less than that observed for nonobese controls. Activity of obese mice is maximal at 19°C and minimal at 15°C or lower. Body weights decrease during exposure to cold. In contrast to that of obese mice, running activity of nonobese controls is maximal at an ambient temperature of 25°C but nearly ceases at 15°C or lower. The food intake of these animals increases in the cold and remains elevated even at temperatures at which activity decreases. The body weight of nonobese controls is either maintained constant or increases during exposure to cold air.


1988 ◽  
Vol 64 (6) ◽  
pp. 2394-2399 ◽  
Author(s):  
M. Soop ◽  
O. Bjorkman ◽  
G. Cederblad ◽  
L. Hagenfeldt ◽  
J. Wahren

We examined 1) the effect of L-carnitine supplementation on free fatty acid (FFA) utilization during exercise and 2) exercise-induced alterations in plasma levels and skeletal muscle exchange of carnitine. Seven moderately trained human male subjects serving as their own controls participated in two bicycle exercise sessions (120 min, 50% of VO2max). The second exercise was preceded by 5 days of oral carnitine supplementation (CS; 5 g daily). Despite a doubling of plasma carnitine levels, with CS, there were no effects on exercise-induced changes in arterial levels and turnover of FFA, the relation between leg FFA inflow and FFA uptake, or the leg exchange of other substrates. Heart rate during exercise after CS decreased 7–8%, but O2 uptake was unchanged. Exercise before CS induced a fall from 33.4 +/- 1.6 to 30.8 +/- 1.0 (SE) mumol/l in free plasma carnitine despite a release (2.5 +/- 0.9 mumol/min) from the leg. Simultaneously, acylated plasma carnitine rose from 5.0 +/- 1.0 to 14.2 +/- 1.4 mumol/l, with no evidence of leg release. Consequently, total plasma carnitine increased. We concluded that in healthy subjects CS does not influence muscle substrate utilization either at rest or during prolonged exercise and that free carnitine released from muscle during exercise is presumably acylated in the liver and released to plasma.


Sign in / Sign up

Export Citation Format

Share Document