Role of Alternative Splicing in Generating Isoform Diversity Among Plasma Membrane Calcium Pumps

2001 ◽  
Vol 81 (1) ◽  
pp. 21-50 ◽  
Author(s):  
Emanuel E. Strehler ◽  
David A. Zacharias

Calcium pumps of the plasma membrane (also known as plasma membrane Ca2+-ATPases or PMCAs) are responsible for the expulsion of Ca2+ from the cytosol of all eukaryotic cells. Together with Na+/Ca2+ exchangers, they are the major plasma membrane transport system responsible for the long-term regulation of the resting intracellular Ca2+concentration. Like the Ca2+ pumps of the sarco/endoplasmic reticulum (SERCAs), which pump Ca2+ from the cytosol into the endoplasmic reticulum, the PMCAs belong to the family of P-type primary ion transport ATPases characterized by the formation of an aspartyl phosphate intermediate during the reaction cycle. Mammalian PMCAs are encoded by four separate genes, and additional isoform variants are generated via alternative RNA splicing of the primary gene transcripts. The expression of different PMCA isoforms and splice variants is regulated in a developmental, tissue- and cell type-specific manner, suggesting that these pumps are functionally adapted to the physiological needs of particular cells and tissues. PMCAs 1 and 4 are found in virtually all tissues in the adult, whereas PMCAs 2 and 3 are primarily expressed in excitable cells of the nervous system and muscles. During mouse embryonic development, PMCA1 is ubiquitously detected from the earliest time points, and all isoforms show spatially overlapping but distinct expression patterns with dynamic temporal changes occurring during late fetal development. Alternative splicing affects two major locations in the plasma membrane Ca2+ pump protein: the first intracellular loop and the COOH-terminal tail. These two regions correspond to major regulatory domains of the pumps. In the first cytosolic loop, the affected region is embedded between a putative G protein binding sequence and the site of phospholipid sensitivity, and in the COOH-terminal tail, splicing affects pump regulation by calmodulin, phosphorylation, and differential interaction with PDZ domain-containing anchoring and signaling proteins. Recent evidence demonstrating differential distribution, dynamic regulation of expression, and major functional differences between alternative splice variants suggests that these transporters play a more dynamic role than hitherto assumed in the spatial and temporal control of Ca2+ signaling. The identification of mice carrying PMCA mutations that lead to diseases such as hearing loss and ataxia, as well as the corresponding phenotypes of genetically engineered PMCA “knockout” mice further support the concept of specific, nonredundant roles for each Ca2+ pump isoform in cellular Ca2+ regulation.

1991 ◽  
Vol 174 (6) ◽  
pp. 1629-1637 ◽  
Author(s):  
J H Cox ◽  
J R Bennink ◽  
J W Yewdell

The E3/19K glycoprotein of adenovirus functions to diminish recognition of adenovirus-infected cells by major histocompatibility complex class I-restricted cytotoxic T lymphocytes (CTLs) by binding intracellular class I molecules and preventing them from reaching the plasma membrane. In the present study we have characterized the nature of the interaction between E3/19K and the H-2Kd (Kd) molecule. An E3/19K molecule genetically engineered to terminate six residues from its normal COOH terminus (delta E19), was found to associate with Kd in a manner indistinguishable from wild-type E3/19K. Unlike E3/19K, however, delta E19 was transported through the Golgi complex to the plasma membrane, where it could be detected biochemically and immunocytochemically using a monoclonal antibody specific for the lumenal domain of E3/19K. Importantly, delta E19 also differed from E3/19K in being unable to prevent the presentation of Kd-restricted viral proteins to CTLs. This is unlikely to be due to delta E19 having a lower avidity for Kd than E3/19K, since delta E19 was able to compete with E3/19K for Kd binding, both physically, and functionally in nullifying the E3/19K blockade of antigen presentation. These findings indicate that the ability of E3/19K to block antigen presentation is due solely to its ability to retain newly synthesized class I molecules in the endoplasmic reticulum.


1997 ◽  
Vol 272 (4) ◽  
pp. C1250-C1261 ◽  
Author(s):  
B. D. Quednau ◽  
D. A. Nicoll ◽  
K. D. Philipson

The gene coding for the Na+/Ca2+ exchanger NCX1 is characterized by a cluster of six exons (A, B, C, D, E, and F) coding for a variable region in the COOH terminus of the large intracellular loop of the protein. Alternative splicing of these exons generates multiple tissue-specific variants of NCX1. Using reverse transcriptase-polymerase chain reaction, we analyzed eight previously described and four new splicing isoforms of NCX1 in a wide variety of tissues and cells. Exons A and B are mutually exclusive, as shown in earlier studies, and splicing isoforms containing exon A are preferentially expressed in heart, brain, and skeletal muscle, whereas splicing variants with exon B are found in all rat tissues except heart. The second and third isoforms of the Na+/Ca2+ exchanger, NCX2 and NCX3, show a deletion of 37 amino acids in the intracellular loop corresponding to parts of the variable region of NCX1. We identified three splicing isoforms of NCX3 in brain and skeletal muscle by reverse transcriptase-polymerase chain reaction. These splice variants are generated by including either of two alternative exons equivalent to the NCX1 exon A or B and by including or excluding a sequence equivalent to the NCX1 exon C. We did not detect any alternative splicing of NCX2. We examined selected tissues from neonatal and adult rats and found developmental regulation for NCX1 and NCX3 splicing isoforms in skeletal muscle. Specific isoform patterns were also detected for NCX1 and NCX3 in cultured cortical neurons, astrocytes, and oligodendrocytes. We suggest a new terminology to distinguish the different splice variants of individual NCX isoforms.


2007 ◽  
Vol 35 (5) ◽  
pp. 913-918 ◽  
Author(s):  
M. Brini ◽  
F. Di Leva ◽  
T. Domi ◽  
L. Fedrizzi ◽  
D. Lim ◽  
...  

In mammals, four different genes encode four PMCA (plasma-membrane Ca2+-ATPase) isoforms. PMCA1 and 4 are expressed ubiquitously, and PMCA2 and 3 are expressed predominantly in the central nervous system. More than 30 variants are generated by mechanisms of alternative splicing. The physiological meaning of the existence of so many isoforms is not clear, but evidently it must be related to the cell-specific demands of Ca2+ homoeostasis. Recent studies suggest that the alternatively spliced regions in PMCA are responsible for specific targeting to plasma membrane domains, and proteins that bind specifically to the pumps could contribute to further regulation of Ca2+ control. In addition, the combination of proteins obtained by alternative splicing occurring at two different sites could be responsible for different functional characteristics of the pumps.


2003 ◽  
Vol 371 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Gui-Ying NIE ◽  
Anne HAMPTON ◽  
Ying LI ◽  
Jock K. FINDLAY ◽  
Lois A. SALAMONSEN

In the present study, we identified an additional member of the human high-temperature requirement factor A (HtrA) protein family, called pregnancy-related serine protease or HtrA3, which was most highly expressed in the heart and placenta. We cloned the full-length sequences of two forms (long and short) of human HtrA3 mRNA, located the gene on chromosome 4p16.1, determined its genomic structure and revealed how the two mRNA variants are produced through alternative splicing. The alternative splicing was also verified by Northern blotting. Four distinct domains were found for the long form HtrA3 protein: (i) an insulin/insulin-like growth factor binding domain, (ii) a Kazal-type S protease-inhibitor domain, (iii) a trypsin protease domain and (iv) a PDZ domain. The short form is identical to the long form except it lacks the PDZ domain. Comparison of all members of human HtrA proteins, including their isoforms, suggests that both isoforms of HtrA3 represent active serine proteases, that they may have different substrate specificities and that HtrA3 may have similar functions to HtrA1. All three HtrA family members showed very different mRNA-expression patterns in 76 human tissues, indicating a specific function for each. Interestingly, both HtrA1 and HtrA3 are highly expressed in the placenta. Identification of the tissue-specific function of each HtrA family member is clearly of importance.


2003 ◽  
Vol 371 (3) ◽  
pp. 775-782 ◽  
Author(s):  
Thomas NEWTON ◽  
John P. J. BLACK ◽  
John BUTLER ◽  
Anthony G. LEE ◽  
John CHAD ◽  
...  

The location of sarco/endoplasmic-reticulum calcium ATPase (SERCA) retention/retrieval motifs in the sequence of the SERCA1 has been investigated by examining the subcellular location in COS-7 cells of enhanced-green-fluorescent-protein-tagged calcium-pump chimaeras. These chimaeras have been constructed from the fast-twitch SERCA1 and the plasma-membrane calcium ATPase PMCA3. The N-terminal, central and C-terminal segments of these calcium pumps were exchanged between SERCA1 and PMCA3. The segments exchanged correspond to residues 1–211, 212–711 and 712–994 of SERCA1, and residues 1–264, 265–788 and 789–1159 of PMCA3 respectively. Only chimaeras containing the N-terminal segment of SERCA1 were located in the endoplasmic reticulum (ER), whereas chimaeras containing the N-terminal segment from PMCA3 were able to escape from the ER and enter the endomembrane pathway en route for the plasma membrane. Co-localization of SERCA1 in COS-7 cells with the ER/Golgi-intermediate compartment marker ERGIC53 indicates that SERCA1 is maintained in the ER by a process of retrieval. These results indicate that the N-terminal region of SERCA1, containing transmembrane helices M1 and M2, contains an ER-retrieval signal.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Daniela Kajihara ◽  
Chung-Chau Hon ◽  
Aimi Naim Abdullah ◽  
João Wosniak ◽  
Ana Iochabel S. Moretti ◽  
...  

Abstract Background Protein Disulfide Isomerases are thiol oxidoreductase chaperones from thioredoxin superfamily with crucial roles in endoplasmic reticulum proteostasis, implicated in many diseases. The family prototype PDIA1 is also involved in vascular redox cell signaling. PDIA1 is coded by the P4HB gene. While forced changes in P4HB gene expression promote physiological effects, little is known about endogenous P4HB gene regulation and, in particular, gene modulation by alternative splicing. This study addressed the P4HB splice variant landscape. Results Ten protein coding sequences (Ensembl) of the P4HB gene originating from alternative splicing were characterized. Structural features suggest that except for P4HB-021, other splice variants are unlikely to exert thiol isomerase activity at the endoplasmic reticulum. Extensive analyses using FANTOM5, ENCODE Consortium and GTEx project databases as RNA-seq data sources were performed. These indicated widespread expression but significant variability in the degree of isoform expression among distinct tissues and even among distinct locations of the same cell, e.g., vascular smooth muscle cells from different origins. P4HB-02, P4HB-027 and P4HB-021 were relatively more expressed across each database, the latter particularly in vascular smooth muscle. Expression of such variants was validated by qRT-PCR in some cell types. The most consistently expressed splice variant was P4HB-021 in human mammary artery vascular smooth muscle which, together with canonical P4HB gene, had its expression enhanced by serum starvation. Conclusions Our study details the splice variant landscape of the P4HB gene, indicating their potential role to diversify the functional reach of this crucial gene. P4HB-021 splice variant deserves further investigation in vascular smooth muscle cells.


2020 ◽  
Author(s):  
zenghong wu ◽  
Yi Zhong ◽  
Fu-Cheng Cai

Abstract Background: Alternative splicing events (ASEs), a critical post-transcriptional regulatory mechanism, expands gene expression patterns, resulting in increased protein diversity and more than 95% of human genes experience AS and encode splice variants in the regular physiological processes. While the role of AS in the thyroid cancer as yet missing, therefore, it was necessary to carry out this study to provide more information about the combination of splicing and clinical parameters, as well as potential mechanism of the survival-related splicing events in thyroid cancer. Materials and methods: Here, we draw all-around AS profiles of thyroid cancer by analyzing RNA-seq data. We also constructed prognostic models via combining splicing signatures and clinicopathological parameters. Splicing network was constructed as a way to offer functional insight into the full practical knowledge of AS in the initiation and development of thyroid cancer. Results: There were 10446 genes, and 45150 AS events in 506 TC patients, which indicates that ASEs are universal in TC. Moreover, 1819 AS signatures were identified to be significantly related to OS of TC patients and among the seven types of ASES, ES was the most common, followed by AP and AT. Kaplan-Meier survival curves results suggested that seven types of ASEs were related to bad prognosis in TC patients (P<0.05). In TC, AA (AUC: 0.937), AD (AUC: 0.965), AT (AUC: 0.964), ES (AUC: 0.999), ME (AUC: 0.999), RI (AUC: 0.837) all demonstrated an AUC over 0.6, of which ES and ME best predict the incidence of TC. We found that age and risk score (All) were risk factors for TC patients. As for ASEs is regulated by SFs, we study if the TC-ASEs were regulated by various SFs and the results demonstrated that the expression of 90 SFs was related to 469 ASEs OS in the TC cohort. Conclusions: In sum, the findings in the current study may provide a basis for spliceosomes in TC, and the methods used in this study could provide novel perspectives in other fields of tumor study to help shed light on future oncology research.


1999 ◽  
Vol 112 (23) ◽  
pp. 4291-4304 ◽  
Author(s):  
B. Quinones ◽  
K. Riento ◽  
V.M. Olkkonen ◽  
S. Hardy ◽  
M.K. Bennett

The syntaxins are a large protein family implicated in the targeting and fusion of intracellular transport vesicles. A subset of proteins of this family are the four syntaxin 2 splice variants, syntaxins 2A (2), 2B (2′), 2C (2″) and 2D. Each syntaxin 2 variant contains an identical, or nearly identical, amino-terminal cytoplasmic domain followed by a distinct hydrophobic (syntaxins 2A and 2B) or hydrophilic (syntaxins 2C and 2D) carboxyl-terminal domain. To investigate whether the difference among the syntaxin 2 variants is functionally important, we have examined comparatively their RNA transcript and protein expression patterns, membrane associations, protein-protein interactions and intracellular localizations. Analysis of the RNA transcript and protein expression patterns demonstrated that syntaxins 2A, 2B and 2C are broadly, but not uniformly, expressed while syntaxin 2D expression is restricted to the brain. Subcellular fractionation studies showed that syntaxins 2A and 2B behave as integral membrane proteins while syntaxin 2C is only partially associated with membranes. In vitro biochemical assays demonstrated that the syntaxin 2 variants exhibit similar yet distinct interactions with other proteins implicated in vesicular trafficking, including SNAP-25, SNAP-23, VAMP-2 and n-sec1. In a variety of nonpolarized cell types, syntaxins 2A and 2B localized to both the plasma membrane and endosomal membranes. However, in two polarized epithelial cell lines, MDCK and Caco-2, syntaxin 2A localized predominantly to the apical plasma membrane while syntaxin 2B was associated with both the apical and the basolateral membranes. These observations indicate that the distinct carboxyl-terminal domains of the syntaxin 2 variants influence their biochemical and localization properties and may therefore confer upon these variants different functional roles in the regulation of intracellular membrane trafficking.


2006 ◽  
Vol 173 (2) ◽  
pp. 219-230 ◽  
Author(s):  
David Frescas ◽  
Manos Mavrakis ◽  
Holger Lorenz ◽  
Robert DeLotto ◽  
Jennifer Lippincott-Schwartz

Drosophila melanogaster embryogenesis begins with 13 nuclear division cycles within a syncytium. This produces &gt;6,000 nuclei that, during the next division cycle, become encased in plasma membrane in the process known as cellularization. In this study, we investigate how the secretory membrane system becomes equally apportioned among the thousands of syncytial nuclei in preparation for cellularization. Upon nuclear arrival at the cortex, the endoplasmic reticulum (ER) and Golgi were found to segregate among nuclei, with each nucleus becoming surrounded by a single ER/Golgi membrane system separate from adjacent ones. The nuclear-associated units of ER and Golgi across the syncytial blastoderm produced secretory products that were delivered to the plasma membrane in a spatially restricted fashion across the embryo. This occurred in the absence of plasma membrane boundaries between nuclei and was dependent on centrosome-derived microtubules. The emergence of secretory membranes that compartmentalized around individual nuclei in the syncytial blastoderm is likely to ensure that secretory organelles are equivalently partitioned among nuclei at cellularization and could play an important role in the establishment of localized gene and protein expression patterns within the early embryo.


2008 ◽  
Vol 19 (7) ◽  
pp. 2777-2788 ◽  
Author(s):  
Nathan Myhill ◽  
Emily M. Lynes ◽  
Jalal A. Nanji ◽  
Anastassia D. Blagoveshchenskaya ◽  
Hao Fei ◽  
...  

Calnexin is an endoplasmic reticulum (ER) lectin that mediates protein folding on the rough ER. Calnexin also interacts with ER calcium pumps that localize to the mitochondria-associated membrane (MAM). Depending on ER homeostasis, varying amounts of calnexin target to the plasma membrane. However, no regulated sorting mechanism is so far known for calnexin. Our results now describe how the interaction of calnexin with the cytosolic sorting protein PACS-2 distributes calnexin between the rough ER, the MAM, and the plasma membrane. Under control conditions, more than 80% of calnexin localizes to the ER, with the majority on the MAM. PACS-2 knockdown disrupts the calnexin distribution within the ER and increases its levels on the cell surface. Phosphorylation by protein kinase CK2 of two calnexin cytosolic serines (Ser554/564) reduces calnexin binding to PACS-2. Consistent with this, a Ser554/564 [Formula: see text] Asp phosphomimic mutation partially reproduces PACS-2 knockdown by increasing the calnexin signal on the cell surface and reducing it on the MAM. PACS-2 knockdown does not reduce retention of other ER markers. Therefore, our results suggest that the phosphorylation state of the calnexin cytosolic domain and its interaction with PACS-2 sort this chaperone between domains of the ER and the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document