scholarly journals The Role of Macrophages in Tumor Development

2005 ◽  
Vol 27 (4) ◽  
pp. 203-213
Author(s):  
Gerben J. van der Bij ◽  
Steven J. Oosterling ◽  
Sybren Meijer ◽  
Robert H. J. Beelen ◽  
Marjolein van Egmond

Macrophages constitute a large proportion of the immune cell infiltrate, which is present in many tumors. Activation state of macrophages is greatly influenced by their environment, leading to different macrophage subsets with diverse functions. Although previously regarded as potent immune cells that are capable of destroying tumor cells, recent literature focuses on the ability of macrophages to promote tumor development due to secretion of mediators, like growth and angiogenic factors. It is now becoming increasingly clear that a complicated synergistic relationship exists between macrophages and malignant cells whereby tumor cells can affect macrophage phenotype, and vice versa. As such, macrophages and their contribution in cancer development are currently subject of debate.

2020 ◽  
Vol 21 (12) ◽  
pp. 4346 ◽  
Author(s):  
Anthony M. Battram ◽  
Mireia Bachiller ◽  
Beatriz Martín-Antonio

Cellular senescence was first described as a physiological tumor cell suppressor mechanism that leads to cell growth arrest with production of the senescence-associated secretory phenotype known as SASP. The main role of SASP in physiological conditions is to attract immune cells to clear senescent cells avoiding tumor development. However, senescence can be damage-associated and, depending on the nature of these stimuli, additional types of senescence have been described. In the context of cancer, damage-associated senescence has been described as a consequence of chemotherapy treatments that were initially thought of as a tumor suppressor mechanism. However, in certain contexts, senescence after chemotherapy can promote cancer progression, especially when immune cells become senescent and cannot clear senescent tumor cells. Moreover, aging itself leads to continuous inflammaging and immunosenescence which are responsible for rewiring immune cells to become defective in their functionality. Here, we define different types of senescence, pathways that activate them, and functions of SASP in these events. Additionally, we describe the role of senescence in cancer and its treatments, including how aging and chemotherapy contribute to senescence in tumor cells, before focusing on immune cell senescence and its role in cancer. Finally, we discuss potential therapeutic interventions to reverse cell senescence.


2020 ◽  
Vol 20 ◽  
Author(s):  
Qionghui Wu ◽  
Haidong Wei ◽  
Wenbo Meng ◽  
Xiaodong Xie ◽  
Zhenchang Zhang ◽  
...  

: Annexin, a calcium-dependent phospholipid binding protein, can affect tumor cell adhesion, proliferation, apoptosis, invasion and metastasis, as well as tumor neovascularization in different ways. Recent studies have shown that annexin exists not only as an intracellular protein in tumor cells, but also in different ways to be secret outside the cell as a “crosstalk” tool for tumor cells and tumor microenvironment, thus playing an important role in the development of tumors, such as participating in epithelial-mesenchymal transition, regulating immune cell behavior, promoting neovascularization and so on. The mechanism of annexin secretion in the form of extracellular vesicles and its specific role is still unclear. This paper summarizes the main role of annexin secreted into the extracellular space in the form of extracellular vesicles in tumorigenesis and drug resistance and analyzes its possible mechanism.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 445 ◽  
Author(s):  
Javier Mora ◽  
Christina Mertens ◽  
Julia K. Meier ◽  
Dominik C. Fuhrmann ◽  
Bernhard Brüne ◽  
...  

The inflammatory tumor microenvironment is an important regulator of carcinogenesis. Tumor-infiltrating immune cells promote each step of tumor development, exerting crucial functions from initiation, early neovascularization, to metastasis. During tumor outgrowth, tumor-associated immune cells, including myeloid cells and lymphocytes, acquire a tumor-supportive, anti-inflammatory phenotype due to their interaction with tumor cells. Microenvironmental cues such as inflammation and hypoxia are mainly responsible for creating a tumor-supportive niche. Moreover, it is becoming apparent that the availability of iron within the tumor not only affects tumor growth and survival, but also the polarization of infiltrating immune cells. The interaction of tumor cells and infiltrating immune cells is multifaceted and complex, finally leading to different activation phenotypes of infiltrating immune cells regarding their functional heterogeneity and plasticity. In recent years, it was discovered that these phenotypes are mainly implicated in defining tumor outcome. Here, we discuss the role of the metabolic activation of both tumor cells and infiltrating immune cells in order to adapt their metabolism during tumor growth. Additionally, we address the role of iron availability and the hypoxic conditioning of the tumor with regard to tumor growth and we describe the relevance of therapeutic strategies to target such metabolic characteristics.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3455
Author(s):  
Blanca Ortiz-Quintero

MicroRNAs (miRNAs) are released by different types of cells through highly regulated mechanisms under normal and pathological conditions. These extracellular miRNAs can be delivered into recipient cells for functional purposes, acting as cell-to-cell signaling mediators. It has been discovered that cancer cells release miRNAs into their surroundings, targeting normal cells or other cancer cells, presumably to promote tumor development and progression. These extracellular miRNAs are associated with oncogenic mechanisms and, because they can be quantified in blood and other bodily fluids, may be suitable noninvasive biomarkers for cancer detection. This review summarizes recent evidence of the role of extracellular miRNAs as intercellular mediators, with an emphasis on their role in the mechanisms of tumor development and progression and their potential value as biomarkers in solid tumors. It also highlights the biological characteristics of extracellular miRNAs that enable them to function as regulators of gene expression, such as biogenesis, gene silencing mechanisms, subcellular compartmentalization, and the functions and mechanisms of release.


2020 ◽  
Vol 35 (1_suppl) ◽  
pp. 8-11 ◽  
Author(s):  
Paola Nisticò ◽  
Gennaro Ciliberto

Our view of cancer biology radically shifted from a “cancer-cell-centric” vision to a view of cancer as an organ disease. The concept that genetic and/or epigenetic alterations, at the basis of cancerogenesis, are the main if not the exclusive drivers of cancer development and the principal targets of therapy, has now evolved to include the tumor microenvironment in which tumor cells can grow, proliferate, survive, and metastasize only within a favorable environment. The interplay between cancer cells and the non-cellular and cellular components of the tumor microenvironment plays a fundamental role in tumor development and evolution both at the primary site and at the level of metastasis. The shape of the tumor cells and tumor mass is the resultant of several contrasting forces either pro-tumoral or anti-tumoral which have at the level of the tumor microenvironment their battle field. This crucial role of tumor microenvironment composition in cancer progression also dictates whether immunotherapy with immune checkpoint inhibitor antibodies is going to be efficacious. Hence, tumor microenvironment deconvolution has become of great relevance in order to identify biomarkers predictive of efficacy of immunotherapy. In this short paper we will briefly review the relationship between inflammation and cancer, and will summarize in 10 short points the key concepts learned so far and the open challenges to be solved.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Andrea Walens ◽  
Ashley V DiMarco ◽  
Ryan Lupo ◽  
Benjamin R Kroger ◽  
Jeffrey S Damrauer ◽  
...  

Over half of breast-cancer-related deaths are due to recurrence 5 or more years after initial diagnosis and treatment. This latency suggests that a population of residual tumor cells can survive treatment and persist in a dormant state for many years. The role of the microenvironment in regulating the survival and proliferation of residual cells following therapy remains unexplored. Using a conditional mouse model for Her2-driven breast cancer, we identify interactions between residual tumor cells and their microenvironment as critical for promoting tumor recurrence. Her2 downregulation leads to an inflammatory program driven by TNFα/NFκB signaling, which promotes immune cell infiltration in regressing and residual tumors. The cytokine CCL5 is elevated following Her2 downregulation and remains high in residual tumors. CCL5 promotes tumor recurrence by recruiting CCR5-expressing macrophages, which may contribute to collagen deposition in residual tumors. Blocking this TNFα-CCL5-macrophage axis may be efficacious in preventing breast cancer recurrence.


Genes ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 270 ◽  
Author(s):  
Ce Yuan ◽  
Clifford J. Steer ◽  
Subbaya Subramanian

Changes in gut microbiota composition have consistently been observed in patients with colorectal cancer (CRC). Yet, it is not entirely clear how the gut microbiota interacts with tumor cells. We know that tumor cells undergo a drastic change in energy metabolism, mediated by microRNAs (miRNAs), and that tumor-derived miRNAs affect the stromal and immune cell fractions of the tumor microenvironment. Recent studies suggest that host intestinal miRNAs can also affect the growth and composition of the gut microbiota. Our previous CRC studies showed a high-level of interconnectedness between host miRNAs and their microbiota. Considering all the evidence to date, we postulate that the altered nutrient composition and miRNA expression in the CRC microenvironment selectively exerts pressure on the surrounding microbiota, leading to alterations in its composition. In this review article, we present our current understanding of the role of miRNAs in mediating host–microbiota interactions in CRC.


Author(s):  
Xianjie Jiang ◽  
Jie Wang ◽  
Xiangying Deng ◽  
Fang Xiong ◽  
Shanshan Zhang ◽  
...  

Abstract Tumor angiogenesis is necessary for the continued survival and development of tumor cells, and plays an important role in their growth, invasion, and metastasis. The tumor microenvironment—composed of tumor cells, surrounding cells, and secreted cytokines—provides a conducive environment for the growth and survival of tumors. Different components of the tumor microenvironment can regulate tumor development. In this review, we have discussed the regulatory role of the microenvironment in tumor angiogenesis. High expression of angiogenic factors and inflammatory cytokines in the tumor microenvironment, as well as hypoxia, are presumed to be the reasons for poor therapeutic efficacy of current anti-angiogenic drugs. A combination of anti-angiogenic drugs and antitumor inflammatory drugs or hypoxia inhibitors might improve the therapeutic outcome.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Huijuan Ma ◽  
Chang-Qing Xia

Myeloid-derived suppressor cells (MDSCs) are identified as a heterogeneous population of cells with the function to suppress innate as well as adaptive immune responses. The initial studies of MDSCs were primarily focused on the field of animal tumor models or cancer patients. In cancer, MDSCs play the deleterious role to inhibit tumor immunity and to promote tumor development. Over the past few years, an increasing number of studies have investigated the role of MDSCs in autoimmune diseases. The beneficial effects of MDSCs in autoimmunity have been reported by some studies, and thus, immunosuppressive MDSCs may be a novel therapeutic target in autoimmune diseases. There are some controversial findings as well. Many questions such as the activation, differentiation, and suppressive functions of MDSCs and their roles in autoimmune diseases remain unclear. In this review, we have discussed the current understanding of MDSCs in autoimmune diseases.


2020 ◽  
Vol 105 (11) ◽  
Author(s):  
Moitza Principe ◽  
Marie Chanal ◽  
Mirela Diana Ilie ◽  
Audrey Ziverec ◽  
Alexandre Vasiljevic ◽  
...  

Abstract Purpose Pituitary neuroendocrine tumors (PitNETs) are frequent intracranial neoplasms that present heterogenic characteristics. Little is known about the immune cell network that exists in PitNETs and its contribution to their aggressive behavior. Methods Here we combined flow cytometry, t-SNE analysis, and histological approaches to define the immune landscape of surgically resected PitNETs. Xenografts of rodent pituitary tumor cells and resected PitNETs were performed in Rag2KO mice, in combination with in vitro analysis aimed at dissecting the role of pituitary tumor-cells in monocyte recruitment. Results We report that gonadotroph PitNETs present an increased CD68+ macrophage signature compared to somatotroph, lactotroph, and corticotroph PitNETs. Transcriptomic and histological characterizations confirmed gonadotroph infiltrating macrophages expressed CD163, MRC-1, ARG1, and CSF1R M2 macrophage markers. Use of growth hormone (GH)3/GH4 somatotroph and LβT2/αT3.1 gonadotroph cells drove THP1 macrophage migration through respective expression of CCL5 or CSF1. Although both LβT2 and GH3 cells recruited F4/80 macrophages following their engraftment in mice, only LβT2 gonadotroph cells showed a capacity for M2-like polarization. Similar observations were performed on patient-derived xenografts from somatotroph and gonadotroph tumors. Analysis of clinical data further demonstrated a significant correlation between the percentage of CD68+ and CD163+ infiltrating macrophages and the invasive character of gonadotroph tumors. Conclusions Gonadotroph tumor drive the recruitment of macrophages and their subsequent polarization to an M2-like phenotype. More importantly, the association between infiltrating CD68+/CD163+ macrophages and the invasiveness of gonadotroph tumors points to macrophage-targeted immunotherapies being a potent strategy to limit the progression of gonadotroph PitNETs.


Sign in / Sign up

Export Citation Format

Share Document