scholarly journals Cooperative Proxy Caching for Wireless Base Stations

2007 ◽  
Vol 3 (1) ◽  
pp. 1-18 ◽  
Author(s):  
James Z. Wang ◽  
Zhidian Du ◽  
Pradip K. Srimani

This paper proposes a mobile cache model to facilitate the cooperative proxy caching in wireless base stations. This mobile cache model uses a network cache line to record the caching state information about a web document for effective data search and cache space management. Based on the proposed mobile cache model, a P2P cooperative proxy caching scheme is proposed to use a self-configured and self-managed virtual proxy graph (VPG), independent of the underlying wireless network structure and adaptive to the network and geographic environment changes, to achieve efficient data search, data cache and date replication. Based on demand, the aggregate effect of data caching, searching and replicating actions by individual proxy servers automatically migrates the cached web documents closer to the interested clients. In addition, a cache line migration (CLM) strategy is proposed to flow and replicate the heads of network cache lines of web documents associated with a moving mobile host to the new base station during the mobile host handoff. These replicated cache line heads provide direct links to the cached web documents accessed by the moving mobile hosts in the previous base station, thus improving the mobile web caching performance. Performance studies have shown that the proposed P2P cooperative proxy caching schemes significantly outperform existing caching schemes.

Author(s):  
Natalya Ivanovna Shaposhnikova ◽  
Alexander Aleksandrovich Sorokin

The article consideres the problems of determining the need to modernize the base stations of the cellular network based on the mathematical apparatus of the theory of fuzzy sets. To improve the quality of telecommunications services the operators should send significant funding for upgrading the equipment of base stations. Modernization can improve and extend the functions of base stations to provide cellular communication, increase the reliability of the base station in operation and the functionality of its individual elements, and reduce the cost of maintenance and repair when working on a cellular network. The complexity in collecting information about the equipment condition is determined by a large number of factors that affect its operation, as well as the imperfection of obtaining and processing the information received. For a comprehensive assessment of the need for modernization, it is necessary to take into account a number of indicators. In the structure of indicators of the need for modernization, there were introduced the parameters reflecting both the degree of aging and obsolescence(the technical gap and the backlog in connection with the emergence of new technologies and standards). In the process of a problem solving, the basic stages of decision-making on modernization have been allocated. Decision-making on the need for modernization is based not only on measuring information that takes into account the decision-makers, but also on linguistic and verbal information. Therefore, to determine the need for upgrading the base stations, the theory of fuzzy sets is used, with the help of which experts can be attracted to this issue. They will be able to formulate additional fuzzy judgments that help to take into account not only measuring characteristics, but also poorly formalized fuzzy information. To do this, the main indicators of the modernization need have been defined, and fuzzy estimates of the need for modernization for all indicators and a set of indicators reflecting the need for upgrading the base stations have been formulated.


Author(s):  
V. Lyandres

Introduction:Effective synthesis of а mobile communication network includes joint optimisation of two processes: placement of base stations and frequency assignment. In real environments, the well-known cellular concept fails due to some reasons, such as not homogeneous traffic and non-isotropic wave propagation in the service area.Purpose:Looking for the universal method of finding a network structure close to the optimal.Results:The proposed approach is based on the idea of adaptive vector quantization of the network service area. As a result, it is reduced to a 2D discrete map split into zones with approximately equal number of service requests. In each zone, the algorithm finds such coordinates of its base station that provide the shortest average distance to all subscribers. This method takes into account the shortage of the a priory information about the current traffic, ensures maximum coverage of the service area, and what is not less important, significantly simplifies the process of frequency assignment.


1977 ◽  
Vol 12 (1) ◽  
pp. 51-76
Author(s):  
B. Bobée ◽  
D. Cluis ◽  
A. Tessier

Abstract A water quality sampling programme for James Bay territory established in a previous study has been carried out for the Department of Natural Resources of the Province of Quebec. The network is composed of 5 base-stations, sampled every fortnight to determine the variability with time of the parameters and 16 satellite-stations, sampled five times yearly with a view to determine the spatial variability. The data (major ions and certain nutrients) gathered during the 1974–1975 field survey are subjected to an analysis by a multivariate technique (correspondence analysis) in addition to certain classical statistical methods. The latter have shown that the mean values obtained at satellite stations were representative of the annual mean. In addition, the results permit the determination for a given parameter, of the relationship between stations and, for a given station, the relationship between parameters. In both cases, the formulation of predictive equations was attempted. An overall evaluation of the data by correspondence analysis has permitted: - a more precise definition of the qualitative behaviour of the different sub-basins of the James Bay territory and characterization of their waters;- a proof of the existence of gradual concentration changes in both East-West and North-South directions. Within the original objectives of the network, the results of the study have led to the following recommendations: - to continue synchronised samplings;- to transform a base station with a low information content into a satellite station;- to create a new base station in the eastern part of the territory.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3584
Author(s):  
Milembolo Miantezila Junior ◽  
Bin Guo ◽  
Chenjie Zhang ◽  
Xuemei Bai

Cellular network operators are predicting an increase in space of more than 200 percent to carry the move and tremendous increase of total users in data traffic. The growing of investments in infrastructure such as a large number of small cells, particularly the technologies such as LTE-Advanced and 6G Technology, can assist in mitigating this challenge moderately. In this paper, we suggest a projection study in spectrum sharing of radar multi-input and multi-output, and mobile LTE multi-input multi-output communication systems near m base stations (BS). The radar multi-input multi-output and mobile LTE communication systems split different interference channels. The new approach based on radar projection signal detection has been proposed for free interference disturbance channel with radar multi-input multi-output and mobile LTE multi-input multi-output by using a new proposed interference cancellation algorithm. We chose the channel of interference with the best free channel, and the detected signal of radar was projected to null space. The goal is to remove all interferences from the radar multi-input multi-output and to cancel any disturbance sources from a chosen mobile Communication Base Station. The experimental results showed that the new approach performs very well and can optimize Spectrum Access.


2013 ◽  
Vol 347-350 ◽  
pp. 975-979
Author(s):  
Rong Zhao ◽  
Cai Hong Li ◽  
Yun Jian Tan ◽  
Jun Shi ◽  
Fu Qiang Mu ◽  
...  

This paper presents a Debris Flow Disaster Faster-than-early Forecast System (DFS) with wireless sensor networks. Debris flows carrying saturated solid materials in water flowing downslope often cause severe damage to the lives and properties in their path. Faster-than-early or faster-than-real-time forecasts are imperative to save lives and reduce damage. This paper presents a novel multi-sensor networks for monitoring debris flows. The main idea is to let these sensors drift with the debris flow, to collect flow information as they move along, and to transmit the collected data to base stations in real time. The Raw data are sent to the cloud processing center from the base station. And the processed data and the video of the debris flow are display on the remote PC. The design of the system address many challenging issues, including cost, deployment efforts, and fast reaction.


2021 ◽  
Vol 2 (5) ◽  
pp. 5-11
Author(s):  
G. A. Tashpulatova ◽  
◽  
A. N. Krasavin

This article is about instrumental measurements of the FR EMR energy flux density. The measurement results were analyzed with the division of the data obtained by the purpose of buildings and the height of the antenna equipment placement, a hygienic assessment of the RF EMR levels created by the equipment of base stations of cellular communications, installed on the roofs of residential and public buildings and adjacent territories of Tashkent is given. A proposal is made on the rational placement of radio engineering facilities.Keywords:electromagnetic field; electromagnetic safety; base station for mobile communications; protection of public health; sanitary supervision


2019 ◽  
Vol 9 (4) ◽  
pp. 43-48
Author(s):  
Rizal Aji Istantowi

4G LTE networks in big cities are already well available. Meanwhile, on small to medium-sized cities, the 4G LTE network is not evenly distributed and maximized. This study chooses the variable tilting antenna to the coverage area, because in sending information from a base station using an antenna. The average RSRP value (dBm) of the existing base station in the calculation with a distance of 200 m is -122.90 dBm, a distance of 500 m is -136.79 dBm, and a distance of 1000 m -147.30 dBm. Meanwhile, in the simulation with a distance of 200 m of -108.22 dBm, a distance of 500 m of -121.81 dBm, and a distance of 1000 m of -132.69 dBm. The coverage area value of the existing base station in the calculation is 5.29%, while in the simulation it is 11.18%. The average RSRP value (dBm) at optimal conditions for calculations at a distance of 200 m is -80.13 dBm, at a distance of 500 m is -94.03 dBm and at a distance of 1000 m is -104.56 dBm. Meanwhile, the simulation at a distance of 200 m is -98.09 dBm, at a distance of 500 m is -112.79 dBm and at a distance of 1000 m is -123.31 dBm. The value of the coverage area for the calculation is 20.32%, while for the simulation it is 15.01%. The current need for base stations in Trenggalek District that has been met is 68%.


2018 ◽  
Vol 10 (7) ◽  
pp. 2432 ◽  
Author(s):  
Lingbo Liu ◽  
Zhenghong Peng ◽  
Hao Wu ◽  
Hongzan Jiao ◽  
Yang Yu

Dasymetric mapping of high-resolution population facilitates the exploration of urban spatial feature. While most relevant studies are still challenged by weak spatial heterogeneity of ancillary data and quality of traditional census data, usually outdated, costly and inaccurate, this paper focuses on mobile phone data, which can be real-time and precise, and also strengthens spatial heterogeneity by its massive mobile phone base stations. However, user population recorded by mobile phone base stations have no fixed spatial boundary, and base stations often disperse in extremely uneven spatial distribution, this study defines a distance-decay supply–demand relation between mobile phone user population of gridded base station and its surrounding land patches, and outlines a dasymetric mapping method integrating two-step floating catchment area method (2SFCAe) and land use regression (LUR). The results indicate that LUR-2SFCAe method shows a high fitness of regression, provides population mapping at a finer scale and helps identify urban centrality and employment subcenters with detailed worktime and non-worktime populations. The work involving studies of dasymetric mapping based on LUR-2SFCAe method and mobile phone data proves to be encouraging, sheds light on the relationship between mobile phone users and nearby land use, brings about an integrated exploration of 2SFCAe in LUR with distance-decay effect and enhances spatial heterogeneity.


A Wireless Sensor Network (WSN) is a component with sensor nodes that continuously observes environmental circumstances. Sensor nodes accomplish different key operations like sensing temperature and distance. It has been used in many applications like computing, signal processing, and network selfconfiguration to expand network coverage and build up its scalability. The Unit of all these sensors that exhibit sensing and transmitting information will offer more information than those offered by autonomously operating sensors. Usually, the transmitting task is somewhat critical as there is a huge amount of data and sensors devices are restricted. Being the limited number of sensor devices the network is exposed to different types of attacks. The Traditional security mechanisms are not suitable for WSN as they are generally heavy and having limited number of nodes and also these mechanisms will not eliminate the risk of other attacks. WSN are most useful in different crucial domains such as health care, environment, industry, and security, military. For example, in a military operation, a wireless sensor network monitors various activities. If an event is detected, these sensor nodes sense that and report the data to the primary (base) station (called sink) by making communication with other nodes. To collect data from WSN base Stations are commonly used. Base stations have more resources (e.g. computation power and energy) compared to normal sensor nodes which include more or less such limitations. Aggregation points will gather the data from neighboring sensor nodes to combine the data and forward to master (base) stations, where the data will be further forwarded or processed to a processing center. In this manner, the energy can be preserved in WSN and the lifetime of network is expanded.


2021 ◽  
Vol 19 (2) ◽  
pp. 41-48
Author(s):  
Yu. V. Nemtsov ◽  
I. V. Seryogin ◽  
P. I. Volnov

Base station (BS) is a terminal device of a radio communication network, while railway radio communications play an important role in ensuring safety of passenger and cargo transportation.A proposed method for calculating the performance of base stations in railway digital radio communication networks is intended to calculate for the BS the probabilities of being in certain state.BS was decomposed and such functional elements as circuit groups and a radio frequency path were identified, as well as the central module ensuring the exchange of information with elements of this BS and with other BSs. A detailed study of each element has increased accuracy of the proposed method. Following the Markov model, BS is presented as a system in which all possible states are considered. Models for BS with two and three circuit groups have been constructed. The parameters of each functional element of the model can be obtained through observation over a certain period. The solution of the system of equations for each of the models presented in the article will allow obtaining the values of the system being in a certain state. The obtained characteristics can be used to calculate the reliability of the entire radio communication network, and then to assess quality of service provided to the users of this network.Conclusions are made about the possibilities of using the obtained models when designing new railway communication networks and when calculating quality indices of existing ones. The proposed models can be applied not only to railway radio communication networks but also to mobile communication networks of commercial operators. 


Sign in / Sign up

Export Citation Format

Share Document