scholarly journals Biological Effects of Mammalian Translationally Controlled Tumor Protein (TCTP) on Cell Death, Proliferation, and Tumorigenesis

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Michiyo Nagano-Ito ◽  
Shinichi Ichikawa

Translationally controlled tumor protein (TCTP) is a highly conserved protein found in eukaryotes, across animal and plant kingdoms and even in yeast. Mammalian TCTP is ubiquitously expressed in various tissues and cell types. TCTP is a multifunctional protein which plays important roles in a number of cell physiological events, such as immune responses, cell proliferation, tumorigenicity, and cell death, including apoptosis. Recent identification of TCTP as an antiapoptotic protein has attracted interest of many researchers in the field. The mechanism of antiapoptotic activity, however, has not been solved completely, and TCTP might inhibit other types of cell death. Cell death (including apoptosis) is closely linked to proliferation and tumorigenesis. In this context, we review recent findings regarding the role of TCTP in cell death, proliferation, and tumorigenesis and discuss the mechanisms.

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Xiaoguang Gu ◽  
Jianan Zhang ◽  
Yajuan Ran ◽  
Hena Pan ◽  
JinHong Jia ◽  
...  

AbstractCircular RNAs have been reported to play significant roles in regulating pathophysiological processes while also guiding clinical diagnosis and treatment of hepatocellular carcinoma (HCC). However, only a few circRNAs have been identified thus far. Herein, we investigated the role of a specific closed-loop structure of hsa_circ_101555 that was generated by back-splicing of the host gene casein kinase 1 gamma 1 (CSNK1G1) in the development and proliferation of HCC. We investigated the expression of Hsa_circ_101555 in HCC and normal tissues using bioinformatics. The expression level of hsa_circ_101555 was further detected by fluorescence in situ hybridization and qRT-PCR in ten HCC patients. Transwell, migration, WST-1 assays, and colony formation assays were used to evaluate the role of hsa_circ_101555 in HCC development and proliferation. The regulatory mechanisms of hsa_circ_101555 in miR-145-5p and CDCA3 were determined by dual luciferase reporter assay. A mouse xenograft model was also used to determine the effect of hsa_circ_101555 on HCC growth in vivo. hsa_circ_101555 showed greater stability than the linear RNA; while in vitro and in vivo results demonstrated that hsa_circ_101555 silencing significantly suppressed cell proliferation, migration, and invasion of HCC cells. Rescue experiments further demonstrated that suppression of miR-145-5p significantly attenuated the biological effects of hsa_circ_101555 knockdown in HCC cells. We also identified a putative oncogene CDCA3 as a potential miR-145-5p target. Thus, our results demonstrated that hsa_circ_101555 might function as a competing endogenous RNA of miR-145-5p to upregulate CDCA3 expression in HCC. These findings suggest that hsa_circ_101555 may be a potential therapeutic target for patients with HCC.


Blood ◽  
2013 ◽  
Vol 121 (5) ◽  
pp. 734-744 ◽  
Author(s):  
Paul Greaves ◽  
John G. Gribben

AbstractThe B7 family consists of structurally related, cell-surface proteins that regulate immune responses by delivering costimulatory or coinhibitory signals through their ligands. Eight family members have been identified to date including CD80 (B7-1), CD86 (B7-2), CD274 (programmed cell death-1 ligand [PD-L1]), CD273 (programmed cell death-2 ligand [PD-L2]), CD275 (inducible costimulator ligand [ICOS-L]), CD276 (B7-H3), B7-H4, and B7-H6. B7 ligands are expressed on both lymphoid and nonlymphoid tissues. The importance of the B7 family in regulating immune responses is clear from their demonstrated role in the development of immunodeficiency and autoimmune diseases. Manipulation of the signals delivered by B7 ligands shows great potential in the treatment of cancers including leukemias and lymphomas and in regulating allogeneic T-cell responses after stem cell transplantation.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Yongyao Wu ◽  
Xiaomin He ◽  
Ning Huang ◽  
Jiayun Yu ◽  
Bin Shao

Abstract A20, also known as TNF-α-induced protein 3 (TNFAIP3), is an anti-inflammatory protein that plays an important part in both immune responses and cell death. Impaired A20 function is associated with several human inflammatory and autoimmune diseases. Although the role of A20 in mediating inflammation has been frequently discussed, its intrinsic link to arthritis awaits further explanation. Here, we review new findings that further demonstrate the molecular mechanisms through which A20 regulates inflammatory arthritis, and we discuss the regulation of A20 by many factors. We conclude by reviewing the latest A20-associated mouse models that have been applied in related research because they reflect the characteristics of arthritis, the study of which will hopefully cast new light on anti-arthritis treatments.


2018 ◽  
Vol 2018 ◽  
pp. 1-4 ◽  
Author(s):  
Song Liu ◽  
Wenxian Guan

STING is a newly identified intracellular sensor of foreign and endogenous DNA. STING has been recognized as an activator of immune responses by TBK1/IRF3 and NF-κB pathways, and it is suggested to play critical roles in host defense, autoimmune diseases, and tumor immunity. Recent studies have revealed that the outcome of STING activation could vary between distinct cell types and scenarios. STING activation in certain cell types triggered cell death including apoptosis and necrosis. This effect could be critical for preventing unnecessary or excessive inflammatory events and maintaining host immune homeostasis. This review is dedicated to summarize recent evidences in the field of STING-mediated cell death and to demonstrate dual outcomes of STING signaling. Besides canonical immune responses represented by IFN and TNF productions, STING signaling can also induce cell death events in a variety of cell types. The double-faced characteristics of STING signaling requires further exploration and precious regulation before tailoring clinical strategies for associated diseases.


2001 ◽  
Vol 66 (6) ◽  
pp. 1074-1082 ◽  
Author(s):  
Ji-Eun Kim ◽  
Baek S. Han ◽  
Won-Seok Choi ◽  
Dae-Seok Eom ◽  
Eun-Hee Lee ◽  
...  

2019 ◽  
Vol 7 (19) ◽  
pp. 3324-3340 ◽  
Author(s):  
Maya Gulubova ◽  
Koni Vancho Ivanova ◽  
Mehmed Hadzhi ◽  
Dimitur Chonov ◽  
Maria Magdalena Ignatova ◽  
...  

Dendritic cells (DCs) use effective mechanisms to combat antigens and to bring about adaptive immune responses through their ability to stimulate nӓive T cells. At present, four major cell types are categorised as DCs: Classical or conventional (cDCs), Plasmacytoid (pDCs), Langerhans cells (LCs), and monocyte-derived DCs (Mo-DCs). It was suggested that pDCs, CD1c+ DCs and CD141+ DCs in humans are equivalent to mouse pDCs, CD11b+ DCs and CD8α+ DCs, respectively. Human CD141+ DCs compared to mouse CD8α+ DCs have remarkable functional and transcriptomic similarities. Characteristic markers, transcription factors, toll-like receptors, T helpers (Th) polarisation, cytokines, etc. of DCs are discussed in this review. Major histocompatibility complex (MHC) I and II antigen presentation, cross-presentation and Th polarisation are defined, and the dual role of DCs in the tumour is discussed. Human DCs are the main immune cells that orchestrate the immune response in the tumour microenvironment.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2509
Author(s):  
Reiko Sugiura ◽  
Ryosuke Satoh ◽  
Teruaki Takasaki

The RAF/MEK/ERK signaling pathway regulates diverse cellular processes as exemplified by cell proliferation, differentiation, motility, and survival. Activation of ERK1/2 generally promotes cell proliferation, and its deregulated activity is a hallmark of many cancers. Therefore, components and regulators of the ERK pathway are considered potential therapeutic targets for cancer, and inhibitors of this pathway, including some MEK and BRAF inhibitors, are already being used in the clinic. Notably, ERK1/2 kinases also have pro-apoptotic functions under certain conditions and enhanced ERK1/2 signaling can cause tumor cell death. Although the repertoire of the compounds which mediate ERK activation and apoptosis is expanding, and various anti-cancer compounds induce ERK activation while exerting their anti-proliferative effects, the mechanisms underlying ERK1/2-mediated cell death are still vague. Recent studies highlight the importance of dual-specificity phosphatases (DUSPs) in determining the pro- versus anti-apoptotic function of ERK in cancer. In this review, we will summarize the recent major findings in understanding the role of ERK in apoptosis, focusing on the major compounds mediating ERK-dependent apoptosis. Studies that further define the molecular targets of these compounds relevant to cell death will be essential to harnessing these compounds for developing effective cancer treatments.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 351 ◽  
Author(s):  
Maria Feoktistova ◽  
Roman Makarov ◽  
Sihem Brenji ◽  
Anne T. Schneider ◽  
Guido J. Hooiveld ◽  
...  

The ubiquitin-editing protein A20 (TNFAIP3) is a known key player in the regulation of immune responses in many organs. Genome-wide associated studies (GWASs) have linked A20 with a number of inflammatory and autoimmune disorders, including psoriasis. Here, we identified a previously unrecognized role of A20 as a pro-apoptotic factor in TNF-induced cell death in keratinocytes. This function of A20 is mediated via the NF-κB-dependent alteration of cIAP1/2 expression. The changes in cIAP1/2 protein levels promote NIK stabilization and subsequent activation of noncanonical NF-κB signaling. Upregulation of TRAF1 expression triggered by the noncanonical NF-κB signaling further enhances the NIK stabilization in an autocrine manner. Finally, stabilized NIK promotes the formation of the ripoptosome and the execution of cell death. Thus, our data demonstrate that A20 controls the execution of TNF-induced cell death on multiple levels in keratinocytes. This signaling mechanism might have important implications for the development of new therapeutic strategies for the treatment of A20-associated skin diseases.


Sign in / Sign up

Export Citation Format

Share Document