scholarly journals Study the Migration Process of Chemical Substances through the Packaging/Food Interface during Microwave Treatment

2013 ◽  
Vol 2013 ◽  
pp. 1-3 ◽  
Author(s):  
Fang Duan ◽  
Ming-qing Chen ◽  
Yong Zhu ◽  
Hui Zhang ◽  
Jing Zhang

The diffusion of chemical substances from packaging into food endangers people’s health. The migration amount of the chemical substances increases with the time and temperature, but the diffusion process for different kinds of packaging materials differs much. Most recently, the research community showed a renewed interest on the diffusion process of chemical substances through packaging/food interface during microwave treatment. In this study, the diffusion coefficient model is suggested and then the migration process is studied based on Fick’s diffusion law. The results are finally compared with the experimental data, showing good agreement.

Entropy ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 13
Author(s):  
Ivan Anashkin ◽  
Sergey Dyakonov ◽  
German Dyakonov

An expression is proposed that relates the transport properties of polar substances (diffusion coefficient, viscosity coefficient, and thermal conductivity coefficient) with entropy. To calculate the entropy, an equation of state with a good description of the properties in a wide region of the state is used. Comparison of calculations based on the proposed expressions with experimental data showed good agreement. A deviation exceeding 20% is observed only in the region near the critical point as well as at high pressures.


Author(s):  
J. Soleimani ◽  
B. Ghanbarzadeh ◽  
J. Dehghannya ◽  
S. Baheri Islami ◽  
S.M. Sorouraddin

AbstractNano-titanium dioxide and nano-silver combined with polystyrene granules to form a nano-composite film. Migration assess were performed by using food simulants 3% acetic acid (indicative acidic food) and 95% ethanol (indicative fatty food) at 40°C on different times of  2, 4, 6, 8 and 10 days. It was found that nanoparticle migration rate in acidic food was higher than fatty food. Diffusion coefficients of nanoparticles into simulants were estimated by inverse simulation of the migration process using finite-element method and experimental data of varied concentration. Simulation revealed an acceptable consistency between experimental data and predicted values. The numerical results indicated that the greatest diffusion coefficient was obtained by nano-titanium (2.8E-10 to 4.1E-9 m2s−1) in the 3% acetic acid. Results of concentration distribution confirmed a higher release rate and more uniformed distribution of nanoparticles for nano-titanium in the 3% acetic acid. It also found that in the migration process the diffusion coefficient is more important than the amount of nanoparticles concentration.


2019 ◽  
Vol 289 ◽  
pp. 205-211 ◽  
Author(s):  
Olga O. Bavrina ◽  
Marina G. Shelyapina ◽  
Daniel Fruchart ◽  
Nikola Novaković

Here we report on the results of our theoretical study of hydrogen localization and motion in disordered bcc Ti-V-Cr alloys. The calculations have been carried out within a DFT supercell approach for a certain composition, namely Ti0.33V0.27Cr0.4 for H/M = 1/32. It was found that hydrogen is localized in highly distorted tetrahedral sites formed by different metal species. H atoms are displaced towards titanium. The estimation of the hydrogen diffusion parameters provides the activation energy value of 0.126 eV and the diffusion coefficient at 294 K equal to 1.9 10-10 m/s2 that is in good agreement with available experimental data.


2020 ◽  
pp. 149-152

The energy states for the J , b , ɤ bands and electromagnetic transitions B (E2) values for even – even molybdenum 90 – 94 Mo nuclei are calculated in the present work of "the interacting boson model (IBM-1)" . The parameters of the equation of IBM-1 Hamiltonian are determined which yield the best excellent suit the experimental energy states . The positive parity of energy states are obtained by using IBS1. for program for even 90 – 94 Mo isotopes with bosons number 5 , 4 and 5 respectively. The" reduced transition probability B(E2)" of these neuclei are calculated and compared with the experimental data . The ratio of the excitation energies of the 41+ to 21+ states ( R4/2) are also calculated . The calculated and experimental (R4/2) values showed that the 90 – 94 Mo nuclei have the vibrational dynamical symmetry U(5). Good agreement was found from comparison between the calculated energy states and electric quadruple probabilities B(E2) transition of the 90–94Mo isotopes with the experimental data .


1977 ◽  
Vol 5 (1) ◽  
pp. 6-28 ◽  
Author(s):  
A. L. Browne

Abstract An analytical tool is presented for the prediction of the effects of changes in tread pattern design on thick film wet traction performance. Results are reported for studies in which the analysis, implemented on a digital computer, was used to determine the effect of different tread geometry features, among these being the number, width, and lateral spacing of longitudinal grooves and the angle of zigzags in longitudinal grooves, on thick film wet traction. These results are shown to be in good agreement with experimental data appearing in the literature and are used to formulate guidelines for tread groove network design practice.


2015 ◽  
Vol 11 (3) ◽  
pp. 3224-3228
Author(s):  
Tarek El-Ashram

In this paper we derived a new condition of formation and stability of all crystalline systems and we checked its validity andit is found to be in a good agreement with experimental data. This condition is derived directly from the quantum conditionson the free electron Fermi gas inside the crystal. The new condition relates both the volume of Fermi sphere VF andvolume of Brillouin zone VB by the valence electron concentration VEC as ;𝑽𝑭𝑽𝑩= 𝒏𝑽𝑬𝑪𝟐for all crystalline systems (wheren is the number of atoms per lattice point).


1982 ◽  
Vol 14 (4-5) ◽  
pp. 253-256
Author(s):  
N Sriramula ◽  
M Chaudhuri

An investigation was undertaken on the removal of a model virus, bacterial virus MS2 against Escherichia coli, by sand filtration using untreated, and alum or cationic polyelectrolyte treated media, and uncoagulated as well as alum coagulated influent. Data on discrete virus removal were satisfactorily accounted for by electrokinetic phenomena and diffusion. For virus in association with turbidity, filter coefficients computed from experimental data were in good agreement with those predicted by mechanical straining and gravity settling which were the dominant mechanisms for removal of the turbidity particles to which the viruses attached.


1991 ◽  
Vol 56 (10) ◽  
pp. 2020-2029
Author(s):  
Jindřich Leitner ◽  
Petr Voňka ◽  
Josef Stejskal ◽  
Přemysl Klíma ◽  
Rudolf Hladina

The authors proposed and treated quantitatively a kinetic model for deposition of epitaxial GaAs layers prepared by reaction of trimethylgallium with arsine in hydrogen atmosphere. The transport of gallium to the surface of the substrate is considered as the controlling process. The influence of the rate of chemical reactions in the gas phase and on the substrate surface on the kinetics of the deposition process is neglected. The calculated dependence of the growth rate of the layers on the conditions of the deposition is in a good agreement with experimental data in the temperature range from 600 to 800°C.


1992 ◽  
Vol 57 (10) ◽  
pp. 2100-2112 ◽  
Author(s):  
Vladimír Kudrna ◽  
Pavel Hasal ◽  
Andrzej Rochowiecki

A process of segregation of two distinct fractions of solid particles in a rotating horizontal drum mixer was described by stochastic model assuming the segregation to be a diffusion process with varying diffusion coefficient. The model is based on description of motion of particles inside the mixer by means of a stochastic differential equation. Results of stochastic modelling were compared to the solution of the corresponding Kolmogorov equation and to results of earlier carried out experiments.


Author(s):  
Emre Kahramanoglu ◽  
Silvia Pennino ◽  
Huseyin Yilmaz

The hydrodynamic characteristics of the planing hulls in particular at the planing regime are completely different from the conventional hull forms and the determination of these characteristics is more complicated. In the present study, calm water hydrodynamic characteristics of planing hulls are investigated using a hybrid method. The hybrid method combines the dynamic trim and sinkage from the Zarnick approach with the Savitsky method in order to calculate the total resistance of the planing hull. Since the obtained dynamic trim and sinkage values by using the original Zarnick approach are not in good agreement with experimental data, an improvement is applied to the hybrid method using a reduction function proposed by Garme. The numerical results obtained by the hybrid and improved hybrid method are compared with each other and available experimental data. The results indicate that the improved hybrid method gives better results compared to the hybrid method, especially for the dynamic trim and resistance. Although the results have some discrepancies with experimental data in terms of resistance, trim and sinkage, the improved hybrid method becomes appealing particularly for the preliminary design stage of the planing hulls.


Sign in / Sign up

Export Citation Format

Share Document