scholarly journals The Low Temperature Induced Physiological Responses ofAvena nudaL., a Cold-Tolerant Plant Species

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Wenying Liu ◽  
Kenming Yu ◽  
Tengfei He ◽  
Feifei Li ◽  
Dongxu Zhang ◽  
...  

The paperaim of the was to study the effect of low temperature stress onAvena nudaL. seedlings. Cold stress leads to many changes of physiological indices, such as membrane permeability, free proline content, malondialdehyde (MDA) content, and chlorophyll content. Cold stress also leads to changes of some protected enzymes such as peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT). We have measured and compared these indices of seedling leaves under low temperature and normal temperature. The proline and MDA contents were increased compared with control; the chlorophyll content gradually decreased with the prolongation of low temperature stress. The activities of SOD, POD, and CAT were increased under low temperature. The study was designated to explore the physiological mechanism of cold tolerance in naked oats for the first time and also provided theoretical basis for cultivation and antibiotic breeding inAvena nudaL.

2020 ◽  
Author(s):  
Changbing Huang ◽  
Chun Jiang ◽  
limin Jin ◽  
Huanchao Zhang

Abstract Background:Hemerocallis fulva is a perennial herb belonging to Hemerocallis of Hemerocallis. Because of the large and bright colors, it is often used as a garden ornamental plant. But most varieties of H. fulva on the market will wither in winter, which will affect their beauty. It is very important to study the effect of low temperature stress on the physiological indexes of H. fulva and understand the cold tolerance of different H. fulva. MiRNA is a kind of endogenous non coding small molecular RNA with length of 21-24nt. It mainly inhibits protein translation by cutting target genes, and plays an important role in the development of organisms, gene expression and biological stress. Low temperature is the main abiotic stress affecting the production of H. fulva in China, which hinders the growth and development of plants. A comprehensive understanding of the expression pattern of microRNA in H. fulva under low temperature stress can improve our understanding of microRNA mediated stress response. Although there are many studies on miRNAs of various plants under cold stress at home and abroad, there are few studies on miRNAs related to cold stress of H. fulva. It is of great significance to explore the cold stress resistant gene resources of H. fulva, especially the identification and functional research of miRNA closely related to cold stress, for the breeding of excellent H. fulva.Results A total of 5619 cold-responsive miRNAs, 315 putative novel and 5 304 conserved miRNAs, were identified from the leaves and roots of two different varieties ‘Jinyan’ (cold-tolerant) and ‘Lucretius ’ (cold-sensitive), which were stressed under -4 oC for 24 h. Twelve conserved and three novel miRNAs (novel-miR10, novel-miR19 and novel-miR48) were differentially expressed in leaves of ‘Jinyan’ under cold stress. Novel-miR19, novel-miR29 and novel-miR30 were up-regulated in roots of ‘Jinyan’ under cold stress. Thirteen and two conserved miRNAs were deferentially expressed in leaves and roots of ‘Lucretius’ after cold stress. The deferentially expressed miRNAs between two cultivars under cold stress include novel miRNAs and the members of the miR156, miR166 and miR319 families. A total of 6 598 target genes for 6 516 known miRNAs and 82 novel miRNAs were predicted by bioinformatic analysis, mainly involved in metabolic processes and stress responses. Ten differentially expressed miRNAs and predicted target genes were confirmed by quantitative reverse transcription PCR(q-PCR), and the expressional changes of target genes were negatively correlated to differentially expressed miRNAs. Our data indicated that some candidate miRNAs (e.g., miR156a-3-p, miR319a, and novel-miR19) may play important roles in plant response to cold stress.Conclusions Our study indicates that some putative target genes and miRNA mediated metabolic processes and stress responses are significant to cold tolerance in H. fulva.


2019 ◽  
Vol 20 (20) ◽  
pp. 5089 ◽  
Author(s):  
Hui Guo ◽  
Tingkai Wu ◽  
Shuxing Li ◽  
Qiang He ◽  
Zhanlie Yang ◽  
...  

Chilling stress is considered the major abiotic stress affecting the growth, development, and yield of rice. To understand the transcriptomic responses and methylation regulation of rice in response to chilling stress, we analyzed a cold-tolerant variety of rice (Oryza sativa L. cv. P427). The physiological properties, transcriptome, and methylation of cold-tolerant P427 seedlings under low-temperature stress (2–3 °C) were investigated. We found that P427 exhibited enhanced tolerance to low temperature, likely via increasing antioxidant enzyme activity and promoting the accumulation of abscisic acid (ABA). The Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq) data showed that the number of methylation-altered genes was highest in P427 (5496) and slightly lower in Nipponbare (Nip) and 9311 (4528 and 3341, respectively), and only 2.7% (292) of methylation genes were detected as common differentially methylated genes (DMGs) related to cold tolerance in the three varieties. Transcriptome analyses revealed that 1654 genes had specifically altered expression in P427 under cold stress. These genes mainly belonged to transcription factor families, such as Myeloblastosis (MYB), APETALA2/ethylene-responsive element binding proteins (AP2-EREBP), NAM-ATAF-CUC (NAC) and WRKY. Fifty-one genes showed simultaneous methylation and expression level changes. Quantitative RT-PCR (qRT-PCR) results showed that genes involved in the ICE (inducer of CBF expression)-CBF (C-repeat binding factor)—COR (cold-regulated) pathway were highly expressed under cold stress, including the WRKY genes. The homologous gene Os03g0610900 of the open stomatal 1 (OST1) in rice was obtained by evolutionary tree analysis. Methylation in Os03g0610900 gene promoter region decreased, and the expression level of Os03g0610900 increased, suggesting that cold stress may lead to demethylation and increased gene expression of Os03g0610900. The ICE-CBF-COR pathway plays a vital role in the cold tolerance of the rice cultivar P427. Overall, this study demonstrates the differences in methylation and gene expression levels of P427 in response to low-temperature stress, providing a foundation for further investigations of the relationship between environmental stress, DNA methylation, and gene expression in rice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xunchao Zhao ◽  
Yulei Wei ◽  
Jinjie Zhang ◽  
Li Yang ◽  
Xinyu Liu ◽  
...  

Low temperature is one of the major abiotic stresses that restrict the growth and development of maize seedlings. Membrane lipid metabolism and remodeling are key strategies for plants to cope with temperature stresses. In this study, an integrated lipidomic and transcriptomic analysis was performed to explore the metabolic changes of membrane lipids in the roots of maize seedlings under cold stress (5°C). The results revealed that major extraplastidic phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA), and phosphatidylinositol (PI)] were dominant membrane lipids in maize root tissues, accounting for more than 70% of the total lipids. In the transcriptome data of maize roots under cold stress, a total of 189 lipid-related differentially expressed genes (DEGs) were annotated and classified into various lipid metabolism pathways, and most of the DEGs were enriched in the “Eukaryotic phospholipid synthesis” (12%), “Fatty acid elongation” (12%), and “Phospholipid signaling” (13%) pathways. Under low temperature stress, the molar percentage of the most abundant phospholipid PC decreased around 10%. The significantly up-regulated expression of genes encoding phospholipase [phospholipase D (PLD)] and phosphatase PAP/LPP genes implied that PC turnover was triggered by cold stress mainly via the PLD pathway. Consequently, as the central product of PC turnover, the level of PA increased drastically (63.2%) compared with the control. The gene-metabolite network and co-expression network were constructed with the prominent lipid-related DEGs to illustrate the modular regulation of metabolic changes of membrane lipids. This study will help to explicate membrane lipid remodeling and the molecular regulation mechanism in field crops encountering low temperature stress.


2021 ◽  
Author(s):  
M. A. Aazami ◽  
M. Asghari Aruq ◽  
M. B. Hassanpouraghdam

Abstract Background: Cold stress is one of the limitative factors of different species of crops on the planet, causing significant damage to the Iranian agricultural industry every year. Grapes are the product of temperate warm zones and sensitive to early autumn cold and spring cold. The current study the effects of cold stress (+1 °C for 4, 8, and 16 hours) on three grapevine cultivars (Ghiziluzum, Khalili, and Perllete) were investigated. Results: The results showed that cold stress caused significant changes in the antioxidant and biochemicals content in the studied cultivars. Furthermore, examining the chlorophyll fluorescence indices, cold stress caused a significant increase in minimal fluorescence (F0), a decrease in maximal fluorescence (Fm), and the maximum photochemical quantum yield of photosystem II (Fv/Fm) in all cultivars. According to the obtained results, among the three studied cultivars, ‘Perllete’ with the highest increase in proline content and the activity of antioxidant enzymes and also, having the lowest accumulation of malondialdehyde, hydrogen peroxide, electrolyte leakage, and F0 as well as less decrease in Fm and Fv/Fm had the higher tolerance to the cold stress than ‘Ghiziluzum’ and ‘Khalili’ cultivars. VvCBF4 and VvNAC1 genes expression was increased in all three cultivars at +1 °C at 8 hours and then decreased. The increase in VvCBF4 and VvNAC1 genes expression in ‘Perllete’ cultivar was higher than the other two cultivars. Conclusion: ‘Perllete’ and ‘Ghiziluzum’ showed the highest tolerance to low temperature stress, respectively. ‘Khalili’ was sensitive to low temperature stress.


2021 ◽  
Author(s):  
Zhichi Zeng ◽  
Sichen Zhang ◽  
Wenyan Li ◽  
Baoshan Chen ◽  
Wenlan Li

Abstract Background: When plants are subjected to cold stress, they undergo a series of molecular and physiological changes to protect themselves from injury. Indica cultivars can usually withstand only mild cold stress in a relatively short period. Hormone-mediated defence response plays an important role in cold stress. Weighted gene co-expression network analysis (WGCNA) is a very useful tool for studying the correlation between genes, identifying modules with high phenotype correlation, and identifying Hub genes in different modules. Many studies have elucidated the molecular mechanisms of cold tolerance in different plants, but little information about the recovery process after cold stress is available.Results: To understand the molecular mechanism of cold tolerance in rice, we performed comprehensive transcriptome analyses during cold treatment and recovery stage in two cultivars of near-isogenic lines (9311 and DC907). Twelve transcriptomes in two rice cultivars were determined. A total of 2509 new genes were predicted by fragment splicing and assembly, and 7506 differentially expressed genes were identified by pairwise comparison. A total of 26 modules were obtained by expression-network analysis, 12 of which were highly correlated with cold stress or recovery treatment. We further identified candidate Hub genes associated with specific modules and analysed their regulatory relationships based on coexpression data. Results showed that various plant-hormone regulatory genes acted together to protect plants from physiological damage under short-term low-temperature stress. We speculated that this may be common in rice. Under long-term cold stress, rice improved the tolerance to low-temperature stress by promoting autophagy, sugar synthesis, and metabolism.Conclusion: Through WGCNA analysis at the transcriptome level, we provided a potential regulatory mechanism for the cold stress and recovery of rice cultivars and identified candidate central genes. Our findings provided an important reference for the future cultivation of rice strains with good tolerance.


2020 ◽  
Author(s):  
Angie Geraldine Sierra Rativa ◽  
Artur Teixeira de Araújo Junior ◽  
Daniele da Silva Friedrich ◽  
Rodrigo Gastmann ◽  
Thainá Inês Lamb ◽  
...  

AbstractRice (Oryza sativa L.) ssp. indica is the most cultivated species in the South of Brazil. However, these plants face low temperature stress from September to November, which is the period of early sowing, affecting plant development during the initial stages of growth, and reducing rice productivity. This study aimed to characterize the root response to low temperature stress during the early vegetative stage of two rice genotypes contrasting in their cold tolerance (CT, cold-tolerant; and CS, cold-sensitive). Root dry weight and length, as well as number of root hairs, were higher in CT than CS when exposed to cold treatment. Histochemical analyses indicated that roots of CS genotype present higher levels of lipid peroxidation and H2O2 accumulation, along with lower levels of plasma membrane integrity than CT under low temperature stress. RNAseq analyses revealed that the contrasting genotypes present completely different molecular responses to cold stress. The number of over-represented functional categories was lower in CT than CS under cold condition, suggesting that CS genotype is more impacted by low temperature stress than CT. Several genes might contribute to rice cold tolerance, including the ones related with cell wall remodeling, cytoskeleton and growth, signaling, antioxidant system, lipid metabolism, and stress response. On the other hand, high expression of the genes SRC2 (defense), root architecture associated 1 (growth), ACC oxidase, ethylene-responsive transcription factor, and cytokinin-O-glucosyltransferase 2 (hormone-related) seems to be related with cold sensibility. Since these two genotypes have a similar genetic background (sister lines), the differentially expressed genes found here can be considered candidate genes for cold tolerance and could be used in future biotechnological approaches aiming to increase rice tolerance to low temperature.


2021 ◽  
Author(s):  
Yuanyuan Fu ◽  
Abdoul Kader Mounkaila Hamani ◽  
Wenjun Sun ◽  
Hongbo Wang ◽  
Abubakar Sunusi Amin ◽  
...  

Abstract Low temperature and soil salinization during cotton sowing and seedling have adverse effects on cotton productivity. Finding an alternative for reducing the low temperature and salt induced damages during the seedling stage of cotton is a challenge for agricultural researchers nowadays. The physiological mechanism of exogenously applied melatonin (MT) on cotton seedlings under low temperature and salt stress is still unclear. The experiment in a phytotron was comprised with two temperature levels of 15°C and 25°C, and 5 MT treatments of 0, 50, 100, 150, 200 µM, and two salinity levels of 0 and 150 mM NaCl stress. Compared with the control treatments (non-salinity stress under 15°C and 25°C), the coupled stress of salt and low temperature reduced cotton seedlings’ biomass and net photosynthetic rate (Pn), aggravated the membrane damage, reduced the potassium (K+) content and increased the sodium (Na+) accumulation in the leaves and roots. Compared with the NaCl-stressed treatment alone, the exogenous foliar applications of 50-150µM MT significantly increased the biomass and gas exchange parameters of cotton seedlings under the coupled salt and low temperature stress conditions. The exogenously applied MT at 50-150µM under the coupled effect of salt and low temperature stress conditions decreased the degree of membrane damage and regulated the activities of the protective enzymes, ion homeostasis, ion transport and absorption of cotton seedlings. The pairwise correlation analysis of each parameter by MT shows that the parameters with higher correlation with MT at 15°C are mainly malondialdehyde (MDA), peroxidase (POD), and catalase (CAT). The most relevant parameters at 25℃ are K+ concentration in leaves (K+-L), K+ concentration in root (K+-R), Na+ concentration in leaves (Na+-L), Na+ concentration in root (Na+-R), Na+ uptake in-root surface (Na+-uptake), K+ ion translocation (K+-translocation). Stepwise linear regression of the above parameters found that MT is more related to MDA at 15°C, and MT is more related to Na+-L at 25°C.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1146
Author(s):  
Parviz Heidari ◽  
Mohammad Reza Amerian ◽  
Gianni Barcaccia

Low temperature is a major limiting factor for the growth and reproduction of some plant species, such as tomato. So far, few studies have been conducted on the effects of low temperature, and the mechanisms of plants’ response to this type of stress is not fully clear. In the current study, the effects of low, nonfreezing temperature (10 °C for three days) on the hormone content, antioxidant activity, and expression patterns of cold-related genes in the leaves of cold-tolerant species (Solanum habrochaites Accession ‘LA1777′) and cold-susceptible species (Solanum lycopersicum cultivar ‘Moneymaker’) were investigated. Low temperature increased the abscisic acid (ABA) content in both tomato species, while the content of zeatin-type cytokinins (ZT) increased in the cold-tolerant species. However, the content of indole-3-acetic acid (IAA) and gibberellic acid (GA) reduced in response to low temperature in susceptible species. Accordingly, cytokinin (CK) is identified as an important hormone associated with low-temperature stress in tomato. In addition, our results indicate that the C-repeat/DRE binding factor 1 (CBF1) gene is less induced in response to low temperature in tomato, although transcription of the inducer of CBF expression 1 (ICE1) gene was upregulated under low temperature in both tomato species. It seems that ICE1 may modulate cold-regulated (COR) genes in a CBF-independent way. In addition, in response to low temperature, the malondialdehyde (MDA) level and membrane stability index (MSI) increased in the susceptible species, indicating that low temperature induces oxidative stress. Additionally, we found that glutathione peroxidase is highly involved in reactive oxygen species (ROS) scavenging induced by low temperature, and antioxidants are more induced in tolerant species. Overall, our results suggest that sub-optimal temperatures promote oxidative stress in tomato and CK is introduced as a factor related to the response to low temperature that requires deeper attention in future breeding programs of tomato.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 84
Author(s):  
Parviz Heidari ◽  
Mahdi Entazari ◽  
Amin Ebrahimi ◽  
Mostafa Ahmadizadeh ◽  
Alessandro Vannozzi ◽  
...  

Low-temperature stress is a type of abiotic stress that limits plant growth and production in both subtropical and tropical climate conditions. In the current study, the effects of 24-epi-brassinolide (EBR) as analogs of brassinosteroids (BRs) were investigated, in terms of hormone content, antioxidant enzyme activity, and transcription of several cold-responsive genes, under low-temperature stress (9 °C) in two different tomato species (cold-sensitive and cold-tolerant species). Results indicated that the treatment with exogenous EBR increases the content of gibberellic acid (GA3) and indole-3-acetic acid (IAA), whose accumulation is reduced by low temperatures in cold-sensitive species. Furthermore, the combination or contribution of BR and abscisic acid (ABA) as a synergetic interaction was recognized between BR and ABA in response to low temperatures. The content of malondialdehyde (MDA) and proline was significantly increased in both species, in response to low-temperature stress; however, EBR treatment did not affect the MDA and proline content. Moreover, in the present study, the effect of EBR application was different in the tomato species under low-temperature stress, which increased the catalase (CAT) activity in the cold-tolerant species and increased the glutathione peroxidase (GPX) activity in the cold-sensitive species. Furthermore, expression levels of cold-responsive genes were influenced by low-temperature stress and EBR treatment. Overall, our findings revealed that a low temperature causes oxidative stress while EBR treatment may decrease the reactive oxygen species (ROS) damage into increasing antioxidant enzymes, and improve the growth rate of the tomato by affecting auxin and gibberellin content. This study provides insight into the mechanism by which BRs regulate stress-dependent processes in tomatoes, and provides a theoretical basis for promoting cold resistance of the tomato.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1877
Author(s):  
Mohammad A. Aazami ◽  
Majid Asghari-Aruq ◽  
Mohammad B. Hassanpouraghdam ◽  
Sezai Ercisli ◽  
Mojmir Baron ◽  
...  

Grapes are sensitive to early autumn and spring low temperature damage. The current study aimed to assay the effects of cold stress (+1 °C for 4, 8, and 16 h) on three grapevine cultivars (Ghiziluzum, Khalili, and Perllete). The results showed that cold stress caused significant changes in the antioxidant and biochemicals content in the studied cultivars. Furthermore, examining the chlorophyll fluorescence indices, cold stress caused a significant increase in minimal fluorescence (F0), a decrease in maximal fluorescence (Fm), and the maximum photochemical quantum yield of photosystem II (Fv/Fm) in all cultivars. Among the studied cultivars, ‘Perllete’ had the highest increase in proline content and activity of antioxidant enzymes and also had the lowest accumulation of malondialdehyde, hydrogen peroxide, electrolyte leakage, and F0, as well as less of a decrease in Fm and Fv/Fm, and had a higher tolerance to cold stress than ‘Ghiziluzum’ and ‘Khalili’. ‘Perllete’ and ‘Ghiziluzum’ showed reasonable tolerance to the low temperature stress. ‘Khalili’ was sensitive to the stress. The rapid screening of grapevine cultivars in early spring low temperatures is applicable with the assaying of some biomolecules and chlorophyll fluorescence.


Sign in / Sign up

Export Citation Format

Share Document