scholarly journals Protective Effects of Huang-Lian-Jie-Du-Tang against Polymicrobial Sepsis Induced by Cecal Ligation and Puncture in Rats

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yufen Wei ◽  
Lei Shan ◽  
Liming Qiao ◽  
Runhui Liu ◽  
Zhenlin Hu ◽  
...  

Huang-Lian-Jie-Du-Tang (HLJDT) is a traditional formula that has long been used for treatment of inflammatory diseases in Traditional Chinese Medicine. In this study, we examined its protective effect against sepsis in an experimental septic model induced by cecal ligation and puncture (CLP) in rats. The results demonstrated that prophylactic administration of HLJDT protected rats from CLP-induced lethality and ameliorated CLP-induced liver and lung injury. HLJDT treatment suppressed the production of proinflammatory cytokines, including TNF-α, IL-1, IL-6, and IL-17A, indicating HLJDT could limit excessive inflammatory responses in septic condition. In addition, HLJDT facilitated bacterial clearance by increasing phagocytic activities of peritoneal macrophages. Furthermore, HLJDT treatment reversed CLP-induced suppression of IFN-γexpression and blocked CLP-induced increase in IL-4 expression in spleens of rats at 24 h after CLP, indicating that HLJDT could reverse the shift from Th1 to Th2 response and promote Th1/Th2 balance toward Th1 predominance in septic rats. Moreover, HLJDT also inhibited the expression of IL-17A and ROR-γt in spleens of septic rats, indicating HLJDT is able to inhibit Th17 activation in septic condition. In conclusion, the present study demonstrated the protective effects of HLJDT against sepsis and highlighted the potential of HLJDT as a medication for septic patients.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Min-Sun Kim ◽  
Gi-Sang Bae ◽  
Kyoung-Chel Park ◽  
Bon Soon Koo ◽  
Byung-Jin Kim ◽  
...  

Myrrh has been used as an antibacterial and anti-inflammatory agent. However, effect of myrrh on peritoneal macrophages and clinically relevant models of septic shock, such as cecal ligation and puncture (CLP), is not well understood. Here, we investigated the inhibitory effect and mechanism(s) of myrrh on inflammatory responses. Myrrh inhibited LPS-induced productions of inflammatory mediators such as nitric oxide, prostaglandin E2, and tumor necrosis factor-αbut not of interleukin (IL)-1βand IL-6 in peritoneal macrophages. In addition, Myrrh inhibited LPS-induced activation of c-jun NH2-terminal kinase (JNK) but not of extracellular signal-regulated kinase (ERK), p38, and nuclear factor-κB. Administration of Myrrh reduced the CLP-induced mortality and bacterial counts and inhibited inflammatory mediators. Furthermore, administration of Myrrh attenuated CLP-induced liver damages, which were mainly evidenced by decreased infiltration of leukocytes and aspartate aminotransferase/alanine aminotransferase level. Taken together, these results provide the evidence for the anti-inflammatory and antibacterial potential of Myrrh in sepsis.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Deok Jeong ◽  
Jaehwi Lee ◽  
Young-Su Yi ◽  
Yanyan Yang ◽  
Kyoung Won Kim ◽  
...  

Electrical stimulation with a weak current has been demonstrated to modulate various cellular and physiological responses, including the differentiation of mesenchymal stem cells and acute or chronic physical pain. Thus, a variety of investigations regarding the physiological role of nano- or microlevel currents at the cellular level are actively proceeding in the field of alternative medicine. In this study, we focused on the anti-inflammatory activity of aluminum-copper patches (ACPs) under macrophage-mediated inflammatory conditions. ACPs generated nanolevel currents ranging from 30 to 55 nA in solution conditions. Interestingly, the nanocurrent-generating aluminum-copper patches (NGACPs) were able to suppress both lipopolysaccharide-(LPS-) and pam3CSK-induced inflammatory responses such as NO and PGE2production in both RAW264.7 cells and peritoneal macrophages at the transcriptional level. Through immunoblotting and immunoprecipitation analyses, we found that p38/AP-1 could be the major inhibitory pathway in the NGACP-mediated anti-inflammatory response. Indeed, inhibition of p38 by SB203580 showed similar inhibitory activity of the production of TNF-αand PGE2and the expression of TNF-αand COX-2 mRNA. These results suggest that ACP-induced nanocurrents alter signal transduction pathways that are involved in the inflammatory response and could therefore be utilized in the treatment of various inflammatory diseases such as arthritis and colitis.


2011 ◽  
Vol 114 (5) ◽  
pp. 1190-1199 ◽  
Author(s):  
Virginia Guptill ◽  
Xizhong Cui ◽  
Alfia Khaibullina ◽  
Jason M. Keller ◽  
Nicholas Spornick ◽  
...  

Background Previous studies suggest that the transient receptor potential vanilloid 1 (TRPV1) channel has a role in sepsis, but it is unclear whether its effect on survival and immune response is beneficial or harmful. Methods We studied the effects of genetic (Trpv1-knockout vs. wild-type [WT] mice) and pharmacologic disruption of TRPV1 with resiniferatoxin (an agonist) or capsazepine (an antagonist) on mortality, bacterial clearance, and cytokine expression during lipopolysaccharide or cecal ligation and puncture-induced sepsis. Results After cecal ligation and puncture, genetic disruption of TRPV1 in Trpv1-knockout versus WT mice was associated with increased mortality risk (hazard ratio, 2.17; 95% CI, 1.23-3.81; P = 0.01). Furthermore, pharmacologic disruption of TRPV1 with intrathecal resiniferatoxin, compared with vehicle, increased mortality risk (hazard ratio, 1.80; 95% CI, 1.05-3.2; P = 0.03) in WT, but not in Trpv1-knockout, mice. After lipopolysaccharide, neither genetic (Trpv1 knockout) nor pharmacologic disruption of TRPV1 with resiniferatoxin had significant effect on survival compared with respective controls. In contrast, after lipopolysaccharide, pharmacologic disruption of TRPV1 with capsazepine, compared with vehicle, increased mortality risk (hazard ratio, 1.92; 95% CI, 1.02-3.61; P = 0.04) in WT animals. Furthermore, after cecal ligation and puncture, increased mortality in resiniferatoxin-treated WT animals was associated with higher blood bacterial count (P = 0.0004) and higher nitrate/nitrite concentrations and down-regulation of tumor necrosis factor α expression (P = 0.004) compared with controls. Conclusions Genetic or pharmacologic disruption of TRPV1 can affect mortality, blood bacteria clearance, and cytokine response in sepsis in patterns that may vary according to the sepsis-inducing event and the method of TRPV1 disruption.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jian Xie ◽  
Zhen-zhen Zhao ◽  
Peng Li ◽  
Cheng-long Zhu ◽  
Yu Guo ◽  
...  

Sepsis may lead to sleep deprivation, which will promote the development of neuroinflammation and mediate the progression of sepsis-associated encephalopathy (SAE). Senkyunolide I, an active component derived from an herb medicine, has been shown to provide a sedative effect to improve sleep. However, its role in sepsis is unclear. The present study was performed to investigate whether Senkyunolide I protected against SAE in a murine model of cecal ligation and puncture (CLP). Here, we showed that Senkyunolide I treatment improved the 7-day survival rate and reduced the excessive release of cytokines including TNF-α, IL-6, and IL-1β. A fear conditioning test was performed, and the results showed that Senkyunolide I attenuated CLP-induced cognitive dysfunction. Senkyunolide I treatment also decreased the phosphorylation levels of inflammatory signaling proteins, including p-ERK, p-JNK, p-P38, and p-P65, and the level of inflammatory cytokines, including TNF-α, IL-6, and IL-1β, in the hippocampus homogenate. Sleep deprivation was attenuated by Senkyunolide I administration, as demonstrated by the modification of the BDNF and c-FOS expression. When sleep deprivation was induced manually, the protective effect of Senkyunolide I against inflammatory responses and cognitive dysfunction was reversed. Our data demonstrated that Senkyunolide I could protect against sepsis-associated encephalopathy in a murine model of sepsis via relieving sleep deprivation.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
E. Sánchez-Miranda ◽  
J. Lemus-Bautista ◽  
S. Pérez ◽  
J. Pérez-Ramos

Kramecyne is a new peroxide, it was isolated fromKrameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases.


2017 ◽  
Vol 12 (10) ◽  
pp. 1934578X1701201 ◽  
Author(s):  
In-Chul Lee ◽  
Jong-Sup Bae

Sulforaphane (SFN) is produced when the enzyme myrosinase transforms glucoraphanin upon damage to the plant such as from chewing and effective in preventing carcinogenesis, diabetes, and inflammatory responses. Transforming growth factor β-induced protein (TGFBIp) is an extracellular matrix protein whose expression in several cell types is greatly increased by TGF-β. TGFBIp is released by human umbilical vein endothelial cells (HUVECs) and functions as a mediator of experimental sepsis. We hypothesized that SFN could reduce TGFBIp-mediated severe inflammatory responses in human endothelial cells and mice. Here, we investigated the anti-septic effects and underlying mechanisms of SFN against TGFBIp-mediated septic responses. SFN effectively inhibited lipopolysaccharide-induced release of TGFBIp and suppressed TGFBIp-mediated septic responses. In addition, SFN suppressed cecal ligation and puncture (CLP)-induced sepsis lethality and pulmonary injury. In conclusion, SFN suppressed TGFBIp-mediated and CLP-induced septic responses. Therefore, SFN could be a potential therapeutic agent for treatment of various severe vascular inflammatory diseases via inhibition of the TGFBIp signaling pathway.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 486 ◽  
Author(s):  
Sheelu Monga ◽  
Rafi Nagler ◽  
Rula Amara ◽  
Abraham Weizman ◽  
Moshe Gavish

The 18 kDa translocator protein (TSPO) ligands 2-Cl-MGV-1 and MGV-1 can attenuate cell death of astrocyte-like cells (U118MG) and induce differentiation of neuronal progenitor cells (PC-12). Lipopolysaccharide (LPS) is a bacterial membrane endotoxin that activates cellular inflammatory pathways by releasing pro-inflammatory molecules, including cytokines and chemokines. The aim of the present study was to assess the immuno-modulatory effect of TSPO ligands in activated microglial cells. We demonstrated that the TSPO ligands 2-Cl-MGV-1 and MGV-1 can prevent LPS-induced activation of microglia (BV-2 cell line). Co-treatment of LPS (100 ng/mL) with these TSPO ligands (final concentration- 25 µM) reduces significantly the LPS-induced release of interleukin-6 (IL-6) from 16.9-fold to 2.5-fold, IL-β from 8.3-fold to 1.6-fold, interferon-γ from 16.0-fold to 2.2-fold, and tumor necrosis factor-α from 16.4-fold to 1.8-fold. This anti-inflammatory activity seems to be achieved by inhibition of NF-κB p65 activation. Assessment of initiation of ROS generation and cell metabolism shows significant protective effects of these two novel TSPO ligands. The IL-10 and IL-13 levels were not affected by any of the TSPO ligands. Thus, it appears that the ligands suppress the LPS-induced activation of some inflammatory responses of microglia. Such immunomodulatory effects may be relevant to the pharmacotherapy of neuro-inflammatory diseases.


2014 ◽  
Vol 121 (2) ◽  
pp. 336-351 ◽  
Author(s):  
XiaoWei Qian ◽  
Tomohiro Numata ◽  
Kai Zhang ◽  
CaiXia Li ◽  
JinChao Hou ◽  
...  

Abstract Background: Recent studies suggest that the transient receptor potential melastatin 2 (TRPM2) channel plays an important role in inflammation and immune response. However, the role and mechanism of TRPM2 in polymicrobial sepsis remain unclear. Methods: The authors explored the effects of genetic disruption of TRPM2 on mortality (n = 15), bacterial clearance (n = 6), organ injury, and systemic inflammation during cecal ligation and puncture–induced sepsis. Electrophysiology, immunoblot, bacterial clearance experiment, and quantitative real-time polymerase chain reaction were used to explore the role and mechanism of TRPM2 in sepsis. Results: After cecal ligation and puncture, Trpm2-knockout mice had increased mortality compared with wild-type mice (73.3 vs. 40%, P = 0.0289). The increased mortality was associated with increased bacterial burden, organ injury, and systemic inflammation. TRPM2-mediated Ca2+ influx plays an important role in lipopolysaccharide or cecal ligation and puncture–induced heme oxygenase-1 (HO-1) expression in macrophage. HO-1 up-regulation decreased bacterial burden both in wild-type bone marrow–derived macrophages and in cecal ligation and puncture–induced septic wild-type mice. Disruption of TRPM2 decreased HO-1 expression and increased bacterial burden in bone marrow–derived macrophages. Pretreatment of Trpm2-knockout bone marrow–derived macrophages with HO-1 inducer markedly increased HO-1 expression and decreased bacterial burden. Pretreatment of Trpm2-knockout mice with HO-1 inducer reversed the susceptibility of Trpm2-knockout mice to sepsis by enhancing the bacterial clearance. In addition, septic patients with lower monocytic TRPM2 and HO-1 messenger RNA levels had a worse outcome compared with septic patients with normal monocytic TRPM2 and HO-1 messenger RNA levels. TRPM2 levels correlated with HO-1 levels in septic patients (r = 0.675, P = 0.001). Conclusion: The study data demonstrate a protective role of TRPM2 in controlling bacterial clearance during polymicrobial sepsis possibly by regulating HO-1 expression.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1061
Author(s):  
Fabrizia Bonacina ◽  
Angela Pirillo ◽  
Alberico L. Catapano ◽  
Giuseppe D. Norata

High density lipoproteins (HDL) are heterogeneous particles composed by a vast array of proteins and lipids, mostly recognized for their cardiovascular (CV) protective effects. However, evidences from basic to clinical research have contributed to depict a role of HDL in the modulation of immune-inflammatory response thus paving the road to investigate their involvement in other diseases beyond those related to the CV system. HDL-C levels and HDL composition are indeed altered in patients with autoimmune diseases and usually associated to disease severity. At molecular levels, HDL have been shown to modulate the anti-inflammatory potential of endothelial cells and, by controlling the amount of cellular cholesterol, to interfere with the signaling through plasma membrane lipid rafts in immune cells. These findings, coupled to observations acquired from subjects carrying mutations in genes related to HDL system, have helped to elucidate the contribution of HDL beyond cholesterol efflux thus posing HDL-based therapies as a compelling interventional approach to limit the inflammatory burden of immune-inflammatory diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yukun Liu ◽  
Yongsheng Zhang ◽  
Quanrui Feng ◽  
Qinxin Liu ◽  
Jie Xie ◽  
...  

Acute lung injury (ALI) has been known to be a devastating form of respiratory infection and an important contributor to mortality in intensive care, due to its lacking of effective treatment. Inflammation, oxidative stress, and pyroptosis are associated with multiple kinds of inflammatory diseases such as ALI. It is commonly accepted that Gly-Pro-Ala (GPA) peptide regulates oxidative stress and pyroptosis in different kinds of inflammatory diseases. Our study is aimed at exploring the regulatory function and protective effects of GPA peptides on ALI. In the current study, the cecal ligation and puncture (CLP) technique was used to evoke sepsis in mice, and GPA peptide was administered intraperitoneally with different concentrations (50, 100, and 150 mg/kg) after CLP. Histopathological changes and the ratio of wet-to-dry in lung were recorded and analyzed. We also investigated the level of oxidative stress, inflammation, and pyroptosis. Results showed that GPA peptide significantly ameliorated CLP-stimulated lung tissue injury, impeded proinflammatory cytokine release, and reduced inflammatory cell infiltration. Additionally, GPA peptide suppressed oxidative stress and caspase-1-dependent pyroptosis in alveolar macrophages. Furthermore, our study showed that the GPA peptide prevents alveolar macrophage from undergoing pyroptosis by attenuating ROS. In conclusion, results demonstrated that GPA peptide has protective effects in CLP-stimulated ALI by inhibiting oxidative stress as well as pyroptosis of alveolar macrophage.


Sign in / Sign up

Export Citation Format

Share Document