scholarly journals Energy Budget on Various Land Use Areas Using Reanalysis Data in Florida

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Chi-Han Cheng ◽  
Fidelia Nnadi ◽  
Yuei-An Liou

Energy budget is closely related to the hydrological cycle through evapotranspiration (ET) or latent heat. Hence, quantifying the energy budget on different land uses is critical for understanding the water budget and providing useful land use information for decision makers. However, traditional methods, including in situ measurements and model-only approaches, have deficiencies in data availability, and we have still not yet fully realized how well the energy budgets presented in reanalysis data sets. Therefore, in this study, North American regional reanalysis (NARR) data set from 1992 to 2002 were employed to investigate the energy budget on various land uses (lake, wetland, agriculture, forest, and urban) at a regional scale in Florida. The results showed that the lake and urban areas had high values of energy budget, evaporation, and low Bowen ratio, while the wetland areas have the opposite treads because of the lowest evaporation rate. During drought periods, Bowen ratio, surface temperature, and sensible heat were becoming higher than those of normal years conditions. Finally, by comparing with the observed data, we found NARR had better assimilation of precipitation observations and demonstrated the land use effects from the different coefficient of correlation relationships.

2018 ◽  
Vol 8 (1) ◽  
pp. 16 ◽  
Author(s):  
Irina Matijosaitiene ◽  
Peng Zhao ◽  
Sylvain Jaume ◽  
Joseph Gilkey Jr

Predicting the exact urban places where crime is most likely to occur is one of the greatest interests for Police Departments. Therefore, the goal of the research presented in this paper is to identify specific urban areas where a crime could happen in Manhattan, NY for every hour of a day. The outputs from this research are the following: (i) predicted land uses that generates the top three most committed crimes in Manhattan, by using machine learning (random forest and logistic regression), (ii) identifying the exact hours when most of the assaults are committed, together with hot spots during these hours, by applying time series and hot spot analysis, (iii) built hourly prediction models for assaults based on the land use, by deploying logistic regression. Assault, as a physical attack on someone, according to criminal law, is identified as the third most committed crime in Manhattan. Land use (residential, commercial, recreational, mixed use etc.) is assigned to every area or lot in Manhattan, determining the actual use or activities within each particular lot. While plotting assaults on the map for every hour, this investigation has identified that the hot spots where assaults occur were ‘moving’ and not confined to specific lots within Manhattan. This raises a number of questions: Why are hot spots of assaults not static in an urban environment? What makes them ‘move’—is it a particular urban pattern? Is the ‘movement’ of hot spots related to human activities during the day and night? Answering these questions helps to build the initial frame for assault prediction within every hour of a day. Knowing a specific land use vulnerability to assault during each exact hour can assist the police departments to allocate forces during those hours in risky areas. For the analysis, the study is using two datasets: a crime dataset with geographical locations of crime, date and time, and a geographic dataset about land uses with land use codes for every lot, each obtained from open databases. The study joins two datasets based on the spatial location and classifies data into 24 classes, based on the time range when the assault occurred. Machine learning methods reveal the effect of land uses on larceny, harassment and assault, the three most committed crimes in Manhattan. Finally, logistic regression provides hourly prediction models and unveils the type of land use where assaults could occur during each hour for both day and night.


2021 ◽  
Author(s):  
Dario Ruggiu ◽  
Salvatore Urru ◽  
Roberto Deidda ◽  
Francesco Viola

<p>The assessment of climate change and land use modifications effects on hydrological cycle is challenging. We propose an approach based on Budyko theory to investigate the relative importance of natural and anthropogenic drivers on water resources availability. As an example of application, the proposed approach is implemented in the island of Sardinia (Italy), which is affected by important processes of both climate and land use modifications. In details, the proposed methodology assumes the Fu’s equation to describe the mechanisms of water partitioning at regional scale and uses the probability distributions of annual runoff (Q) in a closed form. The latter is parametrized by considering simple long-term climatic info (namely first orders statistics of annual rainfall and potential evapotranspiration) and land use properties of basins.</p><p>In order to investigate the possible near future water availability of Sardinia, several climate and land use scenarios have been considered, referring to 2006-2050 and 2051-2100 periods. Climate scenarios have been generated considering fourteen bias corrected outputs of climatic models from EUROCORDEX’s project (RCP 8.5), while three land use scenarios have been created following the last century tendencies.</p><p>Results show that the distribution of annual runoff in Sardinia could be significantly affected by both climate and land use change. The near future distribution of Q generally displayed a decrease in mean and variance compared to the baseline.   </p><p>The reduction of  Q is more critical moving from 2006-2050 to 2051-2100 period, according with climatic trends, namely due to the reduction of annual rainfall and the increase of potential evapotranspiration. The effect of LU change on Q distribution is weaker than the climatic one, but not negligible.</p>


2016 ◽  
Vol 16 (22) ◽  
pp. 14795-14803 ◽  
Author(s):  
Itaru Sano ◽  
Sonoyo Mukai ◽  
Makiko Nakata ◽  
Brent N. Holben

Abstract. Aerosol mass concentrations are affected by local emissions as well as long-range transboundary (LRT) aerosols. This work investigates regional and local variations of aerosols based on Distributed Regional Aerosol Gridded Observation Networks (DRAGON). We constructed DRAGON-Japan and DRAGON-Osaka in spring of 2012. The former network covers almost all of Japan in order to obtain aerosol information in regional scale over Japanese islands. It was determined from the DRAGON-Japan campaign that the values of aerosol optical thickness (AOT) decrease from west to east during an aerosol episode. In fact, the highest AOT was recorded at Fukue Island at the western end of the network, and the value was much higher than that of urban areas. The latter network (DRAGON-Osaka) was set as a dense instrument network in the megalopolis of Osaka, with a population of 12 million, to better understand local aerosol dynamics in urban areas. AOT was further measured with a mobile sun photometer attached to a car. This transect information showed that aerosol concentrations rapidly changed in time and space together when most of the Osaka area was covered with moderate LRT aerosols. The combined use of the dense instrument network (DRAGON-Osaka) and high-frequency measurements provides the motion of aerosol advection, which coincides with the wind vector around the layer between 700 and 850 hPa as provided by the reanalysis data of the National Centers for Environmental Prediction (NCEP).


Land ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 101 ◽  
Author(s):  
Janis Arnold ◽  
Janina Kleemann ◽  
Christine Fürst

Urban ecosystem services (ES) contribute to the compensation of negative effects caused by cities by means of, for example, reducing air pollution and providing cooling effects during the summer time. In this study, an approach is described that combines the regional biotope and land use data set, hemeroby and the accessibility of open space in order to assess the provision of urban ES. Hemeroby expresses the degree of naturalness of land use types and, therefore, provides a differentiated assessment of urban ES. Assessment of the local capacity to provide urban ES was conducted with a spatially explicit modeling approach in the city of Halle (Saale) in Germany. The following urban ES were assessed: (a) global climate regulation, (b) local climate regulation, (c) air pollution control, (d) water cycle regulation, (e) food production, (f) nature experience and (g) leisure activities. We identified areas with high and low capacity of ES in the urban context. For instance, the central parts of Halle had very low or no capacity to provide ES due to highly compact building styles and soil sealing. In contrast, peri-urban areas had particularly high capacities. The potential provision of regulating services was spatially limited due to the location of land use types that provide these services.


2019 ◽  
Vol 11 (7) ◽  
pp. 885 ◽  
Author(s):  
Ustaoglu ◽  
Aydınoglu

. Population growth, economic development and rural-urban migration have caused rapid expansion of urban areas and metropolitan regions in Turkey. The structure of urban administration and planning has faced different socio-economic and political challenges, which have hindered the structured and planned development of cities and regions, resulting in an irregular and uneven development of these regions. We conducted detailed comparative analysis on spatio-temporal changes of the identified seven land-use/cover classes across different regions in Turkey with the use of Corine Land Cover (CLC) data of circa 1990, 2000, 2006 and 2012, integrated with Geographic Information System (GIS) techniques. Here we compared spatio-temporal changes of urban and non-urban land uses, which differ across regions and across different hierarchical levels of urban areas. Our findings have shown that peri-urban areas are growing more than rural areas, and even growing more than urban areas in some regions. A deeper look at regions located in different geographical zones pointed to substantial development disparities across western and eastern regions of Turkey. We also employed multiple regression models to explain any possible drivers of land-use change, regarding both urban and non-urban land uses. The results reveal that the three influencing factors-socio-economic characteristics, regional characteristics and location, and development constraints, facilitate land-use change. However, their impacts differ in different geographical locations, as well as with different hierarchical levels.


Author(s):  
Teija Alenius ◽  
Laurent Marquer ◽  
Chiara Molinari ◽  
Maija Heikkilä ◽  
Antti Ojala

Abstract Understanding about regional versus local changes in vegetation is critical in answering archaeological questions, in particular at a time when humans are assumed to have caused higher disturbances at local scales rather than regional scales; this is the case during the Neolithic. The aim of this paper is to assess the impact of Neolithic land use on regional and local vegetation dynamics, plant composition and disturbance processes (e.g. fire) in eastern Fennoscandia. We apply the Landscape Reconstruction Algorithm (LRA) to high-resolution pollen records from three lacustrine sediment cores that cover the Neolithic period. We calculate changes in vegetation composition and the rate of plant compositional change. Fire dynamics are estimated as an indicator of land use, although fire can result from both natural and anthropogenic disturbances. Our results show that during the Early Neolithic, changes were mainly driven by natural and climate-induced factors and vegetation composition and fire activity were similar at both regional and local scales. From ca. 4000 bc onwards, trends in vegetation and fire dynamics start to differ between regional and local scales. This is due to local land uses that are overshadowed at the regional scale by climate-induced factors. The use of the LOVE model in pollen analyses is therefore very useful to highlight local land uses that are not visible by using REVEALS.


1994 ◽  
Vol 1 (3) ◽  
pp. 236 ◽  
Author(s):  
S. McIntyre

Management of variegated landscapes (in which the native vegetation still forms the matrix but has been modified in a variable way) requires strategies to maintain or enhance existing vegetation within the context of human land-uses such as agriculture. Using rangelands in the New England region of New South Wales as an example, spatial patterns of land-use and modification are described. Management principles for conservation of herbaceous communities in areas of pastoral production are suggested, based on the following assumptions: 1) low intensity pasture utilization and management (i.e., limited fertilization, soil disturbance and grazing) is conducive to the maintenance of species richness at a local and regional scale; 2) stratification of management intensity on farms is compatible with viable grazing operations; 3) landscape context is important as effects of management may spread beyond the managed area; 4) spatial arrangement of land-uses could be optimized to maintain or increase diversity. Although our understanding of these issues is incomplete, there is general observational and theoretical support for them. Incorporation of principles derived from these assumptions in the farm planning process is a useful strategy for preserving grassland vegetation in landscapes where opportunities for reserve conservation are limited.


Author(s):  
Maria A. Cunha-e-Sá ◽  
Sofia F. Franco

Although forests located near urban areas are a small fraction of the forest cover, a good understanding of the extent to which —wildland-urban interface (WUI) forest conversion affects local economies and environmental services can help policy-makers harmonize urban development and environmental preservation at this interface, with positive impact on the welfare of local communities. A growing part of the forest resource worldwide has come under urban influence, both directly (i.e., becoming incorporated into the interface or located at the interface with urban areas) and indirectly (as urban uses and values have come to dominate more remote forest areas). Yet forestry has been rather hesitant to recognize its urban mandate. Even if the decision to convert land at the WUI (agriculture, fruit, timber, or rural use) into an alternative use (residential and commercial development) is conditional on the relative magnitude and timing of the returns of alternative land uses, urban forestry is still firmly rooted in the same basic concepts of traditional forestry. This in turn neglects features characterizing this type of forestland, such as the urban influences from increasingly land-consumptive development patterns. Moreover, interface timber production-allocated land provides public goods that otherwise would be permanently lost if land were converted to an irreversible use. Any framework discussing WUI optimal rotation periods and conversion dates should then incorporate the urban dimension in the forester problem. It must reflect the factors that influence both urban and forestry uses and account for the fact that some types of land use conversion are irreversible. The goal is to present a framework that serves as a first step in explaining the trends in the use and management of private land for timber production in an urbanizing environment. Our framework integrates different land uses to understand two questions: given that most of the WUI land use change is irreversible and forestry at this interface differs from classic forestry, how does urban forestry build upon and benefit from traditional forestry concepts and approaches? In particular, what are the implications for the Faustmann harvesting strategy when conversion to an irreversible land use occurs at some point in the future? The article begins with a short background on the worldwide trend of forestland conversion at the WUI, focusing mostly on the case of developed countries. This provides a context for the theoretical framework used in the subsequent analysis of how urban factors affect regeneration and conversion dates. The article further reviews theoretical models of forest management practices that have considered either land sale following clear-cutting or a switch to a more profitable alternative land use without selling the land. A brief discussion on the studies with a generalization of the classic Faustmann formula for land expectation value is also included. For completeness, comparative statics results and a numerical illustration of the main findings from the private landowner framework are included.


2007 ◽  
Vol 7 (1) ◽  
pp. 753-783 ◽  
Author(s):  
N. Hatzianastassiou ◽  
C. Matsoukas ◽  
E. Drakakis ◽  
P. W. Stackhouse ◽  
P. Koepke ◽  
...  

Abstract. A global estimate of the seasonal direct radiative effect (DRE) of natural plus anthropogenic aerosols on solar radiation under all-sky conditions is obtained by combining satellite measurements and reanalysis data with a spectral radiative transfer model. The estimates are obtained with detailed spectral model computations separating the ultraviolet (UV), visible and near-infrared wavelengths. The global distribution of spectral aerosol optical properties was taken from the Global Aerosol Data Set (GADS) whereas data for clouds, water vapour, ozone, carbon dioxide, methane and surface albedo were taken from various satellite and reanalysis datasets. Using these aerosol properties and other related variables, we generate climatological (for the 12-year period 1984–1995) monthly mean aerosol DREs. The global annual mean DRE on the outgoing SW radiation at the top of atmosphere (TOA, ΔFTOA) is 1.62 Wm−2 (with a range of –10 to 15 Wm−2, positive values corresponding to planetary cooling), the effect on the atmospheric absorption of SW radiation (ΔFatmab) is 1.6 Wm−2 (values up to 35 Wm−2, corresponding to atmospheric warming), and the effect on the surface downward and absorbed SW radiation (Δ Fsurf, and ΔFsurfnet, respectively) is –3.93 and –3.22 Wm−2 (values up to –45 and –35 Wm−2, respectively, corresponding to surface cooling.) According to our results, aerosols decrease/increase the planetary albedo by –3 to 13% at the local scale, whereas on planetary scale the result is an increase of 1.5%. Aerosols can warm locally the atmosphere by up to 0.98 K day−1, whereas they can cool the Earth's surface by up to –2.9 K day−1. Both these effects, which can significantly modify atmospheric dynamics and the hydrological cycle, can produce significant planetary cooling on a regional scale, although planetary warming can arise over highly reflecting surfaces. The aerosol DRE at the Earth's surface compared to TOA can be up to 15 times larger at the local scale. The largest aerosol DRE takes place in the northern hemisphere both at the surface and the atmosphere, arising mainly at ultraviolet and visible wavelengths.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yared Mulat ◽  
Kibebew Kibret ◽  
Bobe Bedadi ◽  
Muktar Mohammed

Abstract Background Soil quality, which can be inferred using indicators that interact synergistically, is affected by land use types and agricultural management practices. This study assessed the status of soil quality under three adjacent land uses (cultivated, grazing, and fallow) in Kersa subwatershed (622 ha). Soil samples were collected from the surface soil (0–20 cm depth) of the identified land uses with three replications and the soil quality parameters were analyzed. A minimum data set of soil quality indicators were selected from physical, chemical, and biological parameters using the literature review and expert opinion method. Linear scoring functions were used to give the unitless scores for the selected data sets, which were then integrated into a soil quality index (SQI). Results The results revealed that bulk density, aggregate stability, pH, cation exchange capacity (CEC), available P, and soil organic carbon (SOC) had a significant difference in SQI among the different land uses. The soil quality indices were 0.69 for grazing land, 0.62 for cultivated land, and 0.59 for the fallow land. The SQI of all the land uses falls in the intermediate soil quality (0.55 < SQI < 0.70) class. Conclusion In almost all the quality indicators assessed, the grazing land was superior to the cultivated and fallow lands. Therefore, implementing management practices that enhance soil quality like organic matter-controlled systems is imperative for sustainable agricultural production in the study area.


Sign in / Sign up

Export Citation Format

Share Document