scholarly journals Quercetin Protects against Obesity-Induced Skeletal Muscle Inflammation and Atrophy

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ngoc Hoan Le ◽  
Chu-Sook Kim ◽  
Taesun Park ◽  
Jung Han Yoon Park ◽  
Mi-Kyung Sung ◽  
...  

Skeletal muscle inflammation and atrophy are closely associated with metabolic impairment such as insulin resistance. Quercetin, a natural polyphenol flavonoid, is known to elicit anti-inflammatory and antioxidant activities. In this study, we investigated its effect on obesity-induced skeletal muscle inflammation and atrophy in mice. Male C57BL/6 mice were fed a regular diet, a high-fat diet (HFD), and an HFD supplemented with quercetin for nine weeks. Quercetin reduced levels of inflammatory cytokines and macrophage accumulation in the skeletal muscle of the HFD-fed obese mice. It also reduced transcript and protein levels of the specific atrophic factors, Atrogin-1 and MuRF1, in the skeletal muscle of the HFD-fed obese mice, and protected against the reduction of muscle mass and muscle fiber size. In vitro, quercetin markedly diminished transcript levels of inflammatory receptors and activation of their signaling molecules (ERK, p38 MAPK, and NF-κB) in cocultured myotubes/macrophages, and this was accompanied by reduced expression of the atrophic factors. Together, these findings suggest that quercetin reduces obesity-induced skeletal muscle atrophy by inhibiting inflammatory receptors and their signaling pathway. Quercetin may be useful for preventing obesity-induced muscle inflammation and sarcopenia.

2020 ◽  
Vol 21 (8) ◽  
pp. 2811
Author(s):  
Ahyoung Yoo ◽  
Young Jin Jang ◽  
Jiyun Ahn ◽  
Chang Hwa Jung ◽  
Hyo Deok Seo ◽  
...  

As obesity promotes ectopic fat accumulation in skeletal muscle, resulting in impaired skeletal muscle and mitochondria function, it is associated with skeletal muscle loss and dysfunction. This study investigated whether Chrysanthemi zawadskii var. latilobum (CZH) protected mice against obesity-induced skeletal muscle atrophy and the underlying molecular mechanisms. High-fat diet (HFD)-induced obese mice were orally administered either distilled water, low-dose CZH (125 mg/kg), or high-dose CZH (250 mg/kg) for 8 w. CZH reduced obesity-induced increases in inflammatory cytokines levels and skeletal muscle atrophy, which is induced by expression of atrophic genes such as muscle RING-finger protein 1 and muscle atrophy F-box. CZH also improved muscle function according to treadmill running results and increased the muscle fiber size in skeletal muscle. Furthermore, CZH upregulated mRNA and protein levels of protein arginine methyltransferases (PRMT)1 and PRMT7, which subsequently attenuated mitochondrial dysfunction in the skeletal muscle of obese mice. We also observed that CZH significantly decreased PRMT6 mRNA and protein expression, which resulted in decreased muscle atrophy. These results suggest that CZH ameliorated obesity-induced skeletal muscle atrophy in mice via regulation of PRMTs in skeletal muscle.


2021 ◽  
Vol 28 ◽  
Author(s):  
Habibeh Mashayekhi-Sardoo ◽  
Adeleh Mashayekhi‐Sardoo ◽  
Basil D. Roufogalis ◽  
Tannaz Jamialahmadi ◽  
Amirhossein Sahebkar

: Curcumin, a yellow pigment in Asian spice, is a natural polyphenol component of Curcuma longa rhizome. Curcuminoid components include curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). Previous studies established curcumin as a safe agent based on preclinical and clinical evaluations and curcuminoids have been approved by the US Food and Drug Administration (FDA) as “Generally Recognized as Safe” (GRAS). The present review collects and summarizes clinical and preclinical studies of curcumin interactions, with an emphasis on the effect of curcumin and curcumin analogs on the mRNA and protein levels of microsomal CYP450 enzymes (phase I metabolism) and their interactions with toxicants, drugs and drug probes. The literature search was conducted using keywords in various scientific databases, including Web of Science, Scopus, PubMed, and Google Scholar. Studies concerning the impact of curcumin and curcumin analogs on microsomal enzyme activity are reviewed and include oral, topical, and systemic treatment in humans and experimental animals, as well as studies from in vitro research. When taken together the data identified some inconsistent results between various studies. The findings showed significant inhibition of CYP450 enzymes by curcumin and its analogs. However such effects often differed when curcumin and curcumin analogs were coadministered with toxicant and other drugs and drug probes. We conclude from this review that herb-drug interactions should be considered when curcumin and curcumin analogs are consumed.


2020 ◽  
Vol 21 (3) ◽  
pp. 1167 ◽  
Author(s):  
Javier Aravena ◽  
Johanna Abrigo ◽  
Francisco Gonzalez ◽  
Francisco Aguirre ◽  
Andrea Gonzalez ◽  
...  

Myostatin is a myokine that regulates muscle function and mass, producing muscle atrophy. Myostatin induces the degradation of myofibrillar proteins, such as myosin heavy chain or troponin. The main pathway that mediates protein degradation during muscle atrophy is the ubiquitin proteasome system, by increasing the expression of atrogin-1 and MuRF-1. In addition, myostatin activates the NF-κB signaling pathway. Renin–angiotensin system (RAS) also regulates muscle mass. Angiotensin (1-7) (Ang-(1-7)) has anti-atrophic properties in skeletal muscle. In this paper, we evaluated the effect of Ang-(1-7) on muscle atrophy and signaling induced by myostatin. The results show that Ang-(1-7) prevented the decrease of the myotube diameter and myofibrillar protein levels induced by myostatin. Ang-(1-7) also abolished the increase of myostatin-induced reactive oxygen species production, atrogin-1, MuRF-1, and TNF-α gene expressions and NF-κB signaling activation. Ang-(1-7) inhibited the activity mediated by myostatin through Mas receptor, as is demonstrated by the loss of all Ang-(1-7)-induced effects when the Mas receptor antagonist A779 was used. Our results show that the effects of Ang-(1-7) on the myostatin-dependent muscle atrophy and signaling are blocked by MK-2206, an inhibitor of Akt/PKB. Together, these data indicate that Ang-(1-7) inhibited muscle atrophy and signaling induced by myostatin through a mechanism dependent on Mas receptor and Akt/PKB.


Author(s):  
Kathryn W. Aguilar-Agon ◽  
Andrew J. Capel ◽  
Jacob W. Fleming ◽  
Darren J. Player ◽  
Neil R. W. Martin ◽  
...  

Abstract Skeletal muscle atrophy as a consequence of acute and chronic illness, immobilisation, muscular dystrophies and aging, leads to severe muscle weakness, inactivity and increased mortality. Mechanical loading is thought to be the primary driver for skeletal muscle hypertrophy, however the extent to which mechanical loading can offset muscle catabolism has not been thoroughly explored. In vitro 3D-models of skeletal muscle provide a controllable, high throughput environment and mitigating many of the ethical and methodological constraints present during in vivo experimentation. This work aimed to determine if mechanical loading would offset dexamethasone (DEX) induced skeletal muscle atrophy, in muscle engineered using the C2C12 murine cell line. Mechanical loading successfully offset myotube atrophy and functional degeneration associated with DEX regardless of whether the loading occurred before or after 24 h of DEX treatment. Furthermore, mechanical load prevented increases in MuRF-1 and MAFbx mRNA expression, critical regulators of muscle atrophy. Overall, we demonstrate the application of tissue engineered muscle to study skeletal muscle health and disease, offering great potential for future use to better understand treatment modalities for skeletal muscle atrophy.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2274
Author(s):  
Roi Cal ◽  
Heidi Davis ◽  
Alish Kerr ◽  
Audrey Wall ◽  
Brendan Molloy ◽  
...  

Skeletal muscle is the metabolic powerhouse of the body, however, dysregulation of the mechanisms involved in skeletal muscle mass maintenance can have devastating effects leading to many metabolic and physiological diseases. The lack of effective solutions makes finding a validated nutritional intervention an urgent unmet medical need. In vitro testing in murine skeletal muscle cells and human macrophages was carried out to determine the effect of a hydrolysate derived from vicia faba (PeptiStrong: NPN_1) against phosphorylated S6, atrophy gene expression, and tumour necrosis factor alpha (TNF-α) secretion, respectively. Finally, the efficacy of NPN_1 on attenuating muscle waste in vivo was assessed in an atrophy murine model. Treatment of NPN_1 significantly increased the phosphorylation of S6, downregulated muscle atrophy related genes, and reduced lipopolysaccharide-induced TNF-α release in vitro. In a disuse atrophy murine model, following 18 days of NPN_1 treatment, mice exhibited a significant attenuation of muscle loss in the soleus muscle and increased the integrated expression of Type I and Type IIa fibres. At the RNA level, a significant upregulation of protein synthesis-related genes was observed in the soleus muscle following NPN_1 treatment. In vitro and preclinical results suggest that NPN_1 is an effective bioactive ingredient with great potential to prolong muscle health.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Anna Montesano ◽  
Pamela Senesi ◽  
Livio Luzi ◽  
Stefano Benedini ◽  
Ileana Terruzzi

The targeting of nutraceutical treatment to skeletal muscle damage is an emerging area of research, driven by the need for new therapies for a range of muscle-associated diseases. L-Carnitine (CARN) is an essential nutrient and plays a key role in mitochondrialβ-oxidation and in the ubiquitin-proteasome system regulation. As a dietary supplement to improve athletic performance, CARN has been studied for its potential to enhanceβ-oxidation. However, CARN effects on myogenesis, mitochondrial activity, and hypertrophy process are not completely elucidated. Thisin vitrostudy aims to investigate CARN role on skeletal muscle remodeling, differentiation process, and myotubes formation. We analyzed muscle differentiation and morphological features in C2C12 myoblasts exposed to 5 mM CARN. Our results showed that CARN was able to accelerate C2C12 myotubes formation and induce morphological changes, characterizing the start of hypertrophy process. In addition, CARN improved AKT activation and downstream cellular signaling pathways involved in skeletal muscle atrophy process prevention. Also, CARN positively regulated the pathways involved in oxidative stress defense. In this work, we provide an interesting novel mechanism of the potential therapeutic use of CARN to treat pathological conditions characterized by skeletal muscle morphological and functional impairment, oxidative stress production, and atrophy process in aging.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Li Wang ◽  
Xin-Feng Jiao ◽  
Cheng Wu ◽  
Xiao-Qing Li ◽  
Hui-Xian Sun ◽  
...  

AbstractSkeletal muscle atrophy is one of the major side effects of high dose or sustained usage of glucocorticoids. Pyroptosis is a novel form of pro-inflammatory programmed cell death that may contribute to skeletal muscle injury. Trimetazidine, a well-known anti-anginal agent, can improve skeletal muscle performance both in humans and mice. We here showed that dexamethasone-induced atrophy, as evidenced by the increase of muscle atrophy F-box (Atrogin-1) and muscle ring finger 1 (MuRF1) expression, and the decrease of myotube diameter in C2C12 myotubes. Dexamethasone also induced pyroptosis, indicated by upregulated pyroptosis-related protein NLR family pyrin domain containing 3 (NLRP3), Caspase-1, and gasdermin-D (GSDMD). Knockdown of NLRP3 or GSDMD attenuated dexamethasone-induced myotube pyroptosis and atrophy. Trimetazidine treatment ameliorated dexamethasone-induced muscle pyroptosis and atrophy both in vivo and in vitro. Activation of NLRP3 using LPS and ATP not only increased the cleavage and activation of Caspase-1 and GSDMD, but also increased the expression levels of atrophy markers MuRF1 and Atrogin-1 in trimetazidine-treated C2C12 myotubes. Mechanically, dexamethasone inhibited the phosphorylation of PI3K/AKT/FoxO3a, which could be attenuated by trimetazidine. Conversely, co-treatment with a PI3K/AKT inhibitor, picropodophyllin, remarkably increased the expression of NLRP3 and reversed the protective effects of trimetazidine against dexamethasone-induced C2C12 myotube pyroptosis and atrophy. Taken together, our study suggests that NLRP3/GSDMD-mediated pyroptosis might be a novel mechanism for dexamethasone-induced skeletal muscle atrophy. Trimetazidine might be developed as a potential therapeutic agent for the treatment of dexamethasone-induced muscle atrophy.


2017 ◽  
Vol 313 (4) ◽  
pp. F887-F898 ◽  
Author(s):  
Suk-Jeong Kim ◽  
Ji-Eun Kim ◽  
Yong-Woon Kim ◽  
Jong-Yeon Kim ◽  
So-Young Park

Regulation of lipogenesis by pathophysiological factors in the liver and skeletal muscle is well understood; however, regulation in the kidney is still unclear. To elucidate nutritional regulation of lipogenic factors in the kidney, we measured the renal expression of lipogenic transcriptional factors and enzymes during fasting and refeeding in chow-fed and high-fat-fed mice. We also examined the regulatory effect of the liver X receptor (LXR) on the expression of lipogenic factors. The renal gene expression of sterol regulatory element-binding protein (SREBP)-1c and fatty acid synthase (FAS) was reduced by fasting for 48 h and restored by refeeding, whereas the mRNA levels of forkhead box O (FOXO)1/3 were increased by fasting and restored by refeeding. Accordingly, protein levels of SREBP-1, FAS, and phosphorylated FOXO1/3 were reduced by fasting and restored by refeeding. The patterns of lipogenic factors expression in the kidney were similar to those in the liver and skeletal muscle. However, this phasic regulation of renal lipogenic gene expression was blunted in diet-induced obese mice. LXR agonist TO901317 increased the lipogenic gene expression and the protein levels of SREBP-1 precursor and FAS but not nuclear SREBP-1. Moreover, increases in insulin-induced gene mRNA and nuclear carbohydrate-responsive element binding protein (ChREBP) levels were observed in the TO901317-treated mice. These results suggest that the kidney shows flexible suppression and restoration of lipogenic factors following fasting and refeeding in lean mice, but this is blunted in obese mice. LXR is involved in the renal expression of lipogenic enzymes, and ChREBP may mediate the response.


Sign in / Sign up

Export Citation Format

Share Document