scholarly journals Novel Techniques to Speed Up the Computation of the Automorphism Group of a Graph

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
José Luis López-Presa ◽  
Luis F. Chiroque ◽  
Antonio Fernández Anta

Graph automorphism (GA) is a classical problem, in which the objective is to compute the automorphism group of an input graph. Most GA algorithms explore a search tree using the individualization-refinement procedure. Four novel techniques are proposed which increase the performance of any algorithm of this type by reducing the depth of the search tree and by effectively pruning it. We formally prove that a GA algorithm that uses these techniques correctly computes the automorphism group of an input graph. Then, we describe how these techniques have been incorporated into the GA algorithm conauto, asconauto-2.03, with at most an additive polynomial increase in its asymptotic time complexity. Using a benchmark of different graph families, we have evaluated the impact of these techniques on the size of the search tree, observing a significant reduction both when they are applied individually and when all of them are applied together. This is also reflected in a reduction of the running time, which is substantial for some graph families. Finally, we have compared the search tree size of conauto-2.03 against those of other popular GA algorithms, observing that, in most cases, conauto explores less nodes than these algorithms.

2020 ◽  
Author(s):  
Maria Vargas ◽  
Pasquale Buonanno ◽  
Carmine Iacovazzo ◽  
Gaetano Di Spigna ◽  
Daniela Spalletti ◽  
...  

Abstract Introduction: Patients with severe pneumonia due COVID-19 are reported to have substantially lower lymphocyte counts and higher plasma concentrations of a number of inflammatory cytokines. In the late stages of COVID-19, cytokine storms are the mainly cause of disease progression and death. We performed a prospective observational study to evaluate the impact of tocilizumab and hydrocortisone on cytokine storm in critically ill patients with COVID-19.Methods: We included all adult patients with laboratory-confirmed COVID-19 infection and severe respiratory failure admitted to our ICU from March 10 to April 30. As therapeutic options, patients received tocilizumab od hydrocortisone. The primary end point was the evaluation of cytokine storm in terms of variation of the IL-6 and IL-6R, sgp130 and TNF-α concentrations during time to different treatment.Results: Eight patients received tocilizumab while 15 patients received hydrocortisone. IL-6 levels were lower in the hydrocortisone group with statistical significance was found at the days 2, 3, 8 and 9. The levels of IL-6R were lower during the days in the hydrocortisone group with statistical significance at days 1, 2, 3, 4, 5, 6, 8 and 10. Hydrocortisone group had higher levels of TNF-α at days 2, 3 and 4. The levels of sgo130 between tocilizumab and hydrocortisone groups were not statistically different during the days.Conclusions: In critically ill patients with severe COVID-19, the use of hydrocortisone allowed a better control of the cytokine storms, was further associated to less days of curarization, pronation and length of stay in ICU, and speed up the time to get negative RT-PCR swab.


Author(s):  
Vianney Kengne Tchendji ◽  
Jean Frederic Myoupo ◽  
Gilles Dequen

In this paper, the authors highlight the existence of close relations between the execution time, efficiency and number of communication rounds in a family of CGM-based parallel algorithms for the optimal binary search tree problem (OBST). In this case, these three parameters cannot be simultaneously improved. The family of CGM (Coarse Grained Multicomputer) algorithms they derive is based on Knuth's sequential solution running in time and space, where n is the size of the problem. These CGM algorithms use p processors, each with local memory. In general, the authors show that each algorithms runs in with communications rounds. is the granularity of their model, and is a parameter that depends on and . The special case of yields a load-balanced CGM-based parallel algorithm with communication rounds and execution steps. Alternately, if , they obtain another algorithm with better execution time, say , the absence of any load-balancing and communication rounds, i.e., not better than the first algorithm. The authors show that the granularity has a crucial role in the different techniques they use to partition the problem to solve and study the impact of each scheduling algorithm. To the best of their knowledge, this is the first unified method to derive a set of parameter-dependent CGM-based parallel algorithms for the OBST problem.


2018 ◽  
Vol 850 ◽  
pp. 1066-1116 ◽  
Author(s):  
Hans C. Mayer ◽  
Rouslan Krechetnikov

While the classical problem of a flat plate impact on a water surface at zero dead-rise angle has been studied for a long time both theoretically and experimentally, it still presents a number of challenges and unsolved questions. Hitherto, the details of the flow field – especially at early times and close to the plate edge, where the classical inviscid theory predicts a singularity in the velocity field and thus in the free surface deflection, so-called ejecta – have not been studied experimentally, which led to mutually contradicting suppositions in the literature. On one hand, it motivated Yakimov’s self-similar scaling near the plate edge. On the other hand, a removal of the singularity was previously suggested with the help of the Kutta–Joukowsky condition at the plate edge, i.e. enforcing the free surface to depart tangentially to the plate. In the present experimental study we were able to overcome challenges with optical access and investigate, for moderate Reynolds ($0.5<Re<25\,000$) and Weber ($1<We<800$) numbers, both the flow fields and the free surface dynamics at the early stage of the water impact, when the penetration depth is small compared to the plate size, thus allowing us to compare to the classical water impact theory valid in the short time limit. This, in particular, enabled us to uncover the effects of viscosity and surface tension on the velocity field and ejecta evolution usually neglected in theoretical studies. While we were able to confirm the far-field inviscid and the near-edge Stokes theoretical scalings of the free surface profiles, Yakimov’s scaling of the velocity field proved to be inapplicable and the Kutta–Joukowsky condition not satisfied universally in the studied range of Reynolds and Weber numbers. Since the local near-edge phenomena cannot be considered independently of the complete water impact event, the experiments were also set up to study the entirety of the water impact phenomena under realistic conditions – presence of air phase and finite depth of penetration. This allowed us to obtain insights also into other key aspects of the water impact phenomena such as air entrapment and pocketing at the later stage when the impactor bottoms out. In our experiments the volume of trapped air proved not to decrease necessarily with the impact speed, an effect that has not been reported before. The observed fast initial retraction of the trapped air film along the plate bottom turned out to be a consequence of a negative pressure impulse generated upon the abrupt deceleration of the plate. This abrupt deceleration is also the cause of the subsequent air pocketing. Quantitative measurements are complemented with basic scaling models explaining the nature of both retraction of the trapped air and air pocket formation.


2016 ◽  
Vol 62 (235) ◽  
pp. 905-911 ◽  
Author(s):  
SAM ROYSTON ◽  
G. HILMAR GUDMUNDSSON

ABSTRACTThe dominant mass-loss process on the Antarctic Peninsula has been ice-shelf collapse, including the Larsen A Ice Shelf in early 1995. Following this collapse, there was rapid speed up and thinning of its tributary glaciers. We model the impact of this ice-shelf collapse on upstream tributaries, and compare with observations using new datasets of surface velocity and ice thickness. Using a two-horizontal-dimension shallow shelf approximation model, we are able to replicate the observed large increase in surface velocity that occurred within Drygalski Glacier, Antarctic Peninsula. The model results show an instantaneous twofold increase in flux across the grounding line, caused solely from the reduction in backstress through ice shelf removal. This demonstrates the importance of ice-shelf buttressing for flow upstream of the grounding line and highlights the need to explicitly include lateral stresses when modelling real-world settings. We hypothesise that further increases in velocity and flux observed since the ice-shelf collapse result from transient mass redistribution effects. Reproducing these effects poses the next, more stringent test of glacier and ice-sheet modelling studies.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3940 ◽  
Author(s):  
Xianwen Ran ◽  
Liangliang Ding ◽  
Jingyuan Zhou ◽  
Wenhui Tang

Currently, PTFE/Al is widely used in the reactive fragmentation warhead. However, for the same explosive yield, the reactive fragments usually have a smaller damage-radius than the inert fragments because PTFE/Al has a poor penetration ability and needs an impact-speed up to 1000 m/s to stimulate its chemical reaction. To enhance the damage power of reactive fragments, six kinds of reactive materials (PTFE/Al, PTFE/B, PTFE/Si, PTFE/Al/B, PTFE/Al/Si, and PTFE/Al/CuO) based on PTFE were designed and studied. Through the drop weight system and the self-designed energy release test device, qualitative and quantitative analysis of the energy release ability of six kinds of reactive materials were carried out. The qualitative analysis results indicate that the reactions of PTFE/B and PTFE/Si are weak under the impact of drop hammer with only a very weak fire light produced, while the reactions of PTFE/Al, PTFE/Al/B, PTFE/Al/Si, and PTFE/Al/CuO are relatively intense, and the reaction of PTFE/Al/Si is the most intense. Through the self-designed energy release test device, the energy release ability of the reactive material was quantitatively compared and analyzed. The results show that the energy release ability of the four formulations were as follows: PTFE/Al/Si > PTFE/Al/CuO > PTFE/Al/B > PTFE/Al. Therefore, it can be concluded that the PTFE/Al/Si formulation is a new reactive material with strong energy release ability, which can be a new choice for reactive fragment.


2012 ◽  
Vol 729 ◽  
pp. 460-463
Author(s):  
Péter Nagy ◽  
János Dobránszky

In this article the complex research and development project of the laser cutting micromachining of nitinol alloys are shown. The laser cutting parameters of the 1.04 mm inner diameter and 0.1 mm wall thickness nitinol tubes are also shown. The laser cutting parameters of micromachining and the cut surface of nitinol tubes are summarized when 3 mJ pulse energy, 0.02 ms pulse duration, 6 bar Ar gas pressure, 3000 Hz frequency, 10 mm/s rotation speed and 5 mm/s2 speed-up were used. The effect of the laser cutting to the raw material is characterized by microstructural and micromechanical examinations. A detailed description is given of the energy input by laser beam machining. The pulse and the impact of the applied pressure parameters of the gas to the raw material are also shown.


Author(s):  
Ahmad Fakheri

A classical problem in fluid mechanics and heat transfer is boundary layer flow over a flat plate. This problem is used to demonstrate a number of important concepts in fluid mechanics and heat transfer. Typically, in a basic course, the equations are derived and the solutions are presented in tabular or chart from. Obtaining the actual solutions is mathematically and numerically too involved to be covered in basic courses. In this paper, it is shown that the similarity solution and the solution to boundary layer equations in the primitive variables can easily be obtained using spreadsheets. Without needing much programming skills, or needing to learn specialized software, undergraduate students can use this approach and obtain the solution and study the impact of different parameters.


2010 ◽  
Vol 439-440 ◽  
pp. 1505-1510
Author(s):  
Li Chen

Nowadays, data warehouse has already become the hot spot in database studies. Indexes can potentially speed up a variety of operations in a data warehouse. In this paper, we present several relatively mature index techniques in data warehouse. Then, we give a comparison between them on performance evaluations. This paper focuses on the performance evaluation of three data warehouse queries with three different indexing techniques and to observe the impact of variable size data with respect to time and space complexity.


Sign in / Sign up

Export Citation Format

Share Document