scholarly journals Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Monika Styrczewska ◽  
Anna Kostyn ◽  
Anna Kulma ◽  
Grazyna Majkowska-Skrobek ◽  
Daria Augustyniak ◽  
...  

Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. Inin vitroproliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, butβ-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- andβ-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification.

2021 ◽  
Vol 9 (2) ◽  
pp. 45
Author(s):  
Ines Maria Niederstätter ◽  
Jennifer Lynn Schiefer ◽  
Paul Christian Fuchs

Usually, cutaneous wound healing does not get impeded and processes uneventfully, reaching wound closure easily. The goal of this repair process is to restore the integrity of the body surface by creating a resilient and stable scar. Surgical practice and strategies have an impact on the course of wound healing and the later appearance of the scar. By considering elementary surgical principles, such as the appropriate suture material, suture technique, and timing, optimal conditions for wound healing can be created. Wounds can be differentiated into clean wounds, clean–contaminated wounds, contaminated, and infected/dirty wounds, based on the degree of colonization or infection. Furthermore, a distinction is made between acute and chronic wounds. The latter are wounds that persist for longer than 4–6 weeks. Care should be taken to avoid surgical site infections in the management of wounds by maintaining sterile working conditions, using antimicrobial working techniques, and implementing the principles of preoperative antibiotics. Successful wound closure is influenced by wound debridement. Wound debridement removes necrotic tissue, senescent and non-migratory cells, bacteria, and foreign bodies that impede wound healing. Additionally, the reconstructive ladder is a viable and partially overlapping treatment algorithm in plastic surgery to achieve successful wound closure.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Keizo Kohno ◽  
Satomi Koya-Miyata ◽  
Akira Harashima ◽  
Takahiko Tsukuda ◽  
Masataka Katakami ◽  
...  

Abstract Background NK-4 has been used to promote wound healing since the early-1950s; however, the mechanism of action of NK-4 is unknown. In this study, we examined whether NK-4 exerts a regulatory effect on macrophages, which play multiple roles during wound healing from the initial inflammatory phase until the tissue regeneration phase. Results NK-4 treatment of THP-1 macrophages induced morphological features characteristic of classically-activated M1 macrophages, an inflammatory cytokine profile, and increased expression of the M1 macrophage-associated molecules CD38 and CD86. Interestingly, NK-4 augmented TNF-α production by THP-1 macrophages in combination with LPS, Pam3CSK4, or poly(I:C). Furthermore, NK-4 treatment enhanced THP-1 macrophage phagocytosis of latex beads. These results indicate that NK-4 drives macrophage polarization toward an inflammatory M1-like phenotype with increased phagocytic activity. Efferocytosis is a crucial event for resolution of the inflammatory phase in wound healing. NK-4-treated THP-1 macrophages co-cultured with apoptotic Jurkat E6.1 (Apo-J) cells switched from an M1-like phenotype to an M2-like phenotype, as seen in the inverted ratio of TNF-α to IL-10 produced in response to LPS. We identified two separate mechanisms that are involved in this phenotypic switch. First, recognition of phosphatidylserine molecules on Apo-J cells by THP-1 macrophages downregulates TNF-α production. Second, phagocytosis of Apo-J cells by THP-1 macrophages and activation of PI3K/Akt signaling pathway upregulates IL-10 production. Conclusion It is postulated that the phenotypic switch from a proinflammatory M1-like phenotype to an anti-inflammatory M2-like phenotype is dysregulated due to impaired efferocytosis of apoptotic neutrophils at the wound site. Our results demonstrate that NK-4 improves phagocytosis of apoptotic cells, suggesting its potential as a therapeutic strategy to resolve sustained inflammation in chronic wounds.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Na-Young Park ◽  
Giuseppe Valacchi ◽  
Yunsook Lim

Inflammatory response is considered the most important period that regulates the entire healing process. Conjugated linoleic acid (CLA), a class of linoleic acid positional and geometric isomers, is well known for its antioxidant and anti-inflammatory properties. We hypothesized that dietary CLA supplementation accelerates cutaneous wound healing by regulating antioxidant and anti-inflammatory functions. To investigate wound closure rates and inflammatory responses, we used a full-thickness excisional wound model after 2-week treatments with control, 0.5%, or 1% CLA-supplemented diet. Mice fed dietary CLA supplementation had reduced levels of oxidative stress and inflammatory markers. Moreover, the wound closure rate was improved significantly in mice fed a 1% CLA-supplemented diet during early stage of wound healing (inflammatory stage). We conclude that dietary CLA supplementation enhances the early stage of cutaneous wound healing as a result of modulating oxidative stress and inflammatory responses.


2018 ◽  
Vol 38 (4) ◽  
Author(s):  
Zoë E. Clayton ◽  
Richard P. Tan ◽  
Maria M. Miravet ◽  
Katarina Lennartsson ◽  
John P. Cooke ◽  
...  

Chronic wounds are a major complication in patients with cardiovascular diseases. Cell therapies have shown potential to stimulate wound healing, but clinical trials using adult stem cells have been tempered by limited numbers of cells and invasive procurement procedures. Induced pluripotent stem cells (iPSCs) have several advantages of other cell types, for example they can be generated in abundance from patients’ somatic cells (autologous) or those from a matched donor. iPSCs can be efficiently differentiated to functional endothelial cells (iPSC-ECs). Here, we used a murine excisional wound model to test the pro-angiogenic properties of iPSC-ECs in wound healing. Two full-thickness wounds were made on the dorsum of NOD-SCID mice and splinted. iPSC-ECs (5 × 105) were topically applied to one wound, with the other serving as a control. Treatment with iPSC-ECs significantly increased wound perfusion and accelerated wound closure. Expression of endothelial cell (EC) surface marker, platelet endothelial cell adhesion molecule (PECAM-1) (CD31), and pro-angiogenic EC receptor, Tie1, mRNA was up-regulated in iPSC-EC treated wounds at 7 days post-wounding. Histological analysis of wound sections showed increased capillary density in iPSC-EC wounds at days 7 and 14 post-wounding, and increased collagen content at day 14. Anti-GFP fluorescence confirmed presence of iPSC-ECs in the wounds. Bioluminescent imaging (BLI) showed progressive decline of iPSC-ECs over time, suggesting that iPSC-ECs are acting primarily through short-term paracrine effects. These results highlight the pro-regenerative effects of iPSC-ECs and demonstrate that they are a promising potential therapy for intractable wounds.


Antioxidants ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 146 ◽  
Author(s):  
Anke Schmidt ◽  
Sander Bekeschus

Chronic wounds and ulcers are major public health threats. Being a substantial burden for patients and health care systems alike, better understanding of wound pathophysiology and new avenues in the therapy of chronic wounds are urgently needed. Cold physical plasmas are particularly effective in promoting wound closure, irrespective of its etiology. These partially ionized gases deliver a therapeutic cocktail of reactive oxygen and nitrogen species safely at body temperature and without genotoxic side effects. This field of plasma medicine reanimates the idea of redox repair in physiological healing. This review compiles previous findings of plasma effects in wound healing. It discusses new links between plasma treatment of cells and tissues, and the perception and intracellular translation of plasma-derived reactive species via redox signaling pathways. Specifically, (i) molecular switches governing redox-mediated tissue response; (ii) the activation of the nuclear E2-related factor (Nrf2) signaling, together with antioxidative and immunomodulatory responses; and (iii) the stabilization of the scaffolding function and actin network in dermal fibroblasts are emphasized in the light of wound healing.


2020 ◽  
Author(s):  
Keizo Kohno ◽  
Satomi Koya-Miyata ◽  
Akira Harashima ◽  
Takahiko Tsukuda ◽  
Masataka Katakami ◽  
...  

Abstract Background: NK-4 has been used to promote wound healing since the early-1950s; however, the mechanism of action of NK-4 is unknown. In this study, we examined whether NK-4 exerts a regulatory effect on macrophages, which play multiple roles during wound healing from the initial inflammatory phase until the tissue regeneration phase. Results: NK-4 treatment of THP-1 macrophages induced morphological features characteristic of classically-activated M1 macrophages, an inflammatory cytokine profile, and increased expression of the M1 macrophage-associated molecules CD38 and CD86. Interestingly, NK-4 augmented TNF-a production by THP-1 macrophages in combination with LPS, Pam3CSK4, or poly(I:C). Furthermore, NK-4 treatment enhanced THP-1 macrophage phagocytosis. These results indicate that NK-4 drives macrophage polarization toward an inflammatory M1-like phenotype with increased phagocytic activity. Efferocytosis is a crucial event for resolution of the inflammatory phase in wound healing. NK-4-treated THP-1 macrophages co-cultured with apoptotic Jurkat E6.1 (Apo-J) cells switched from an M1-like phenotype to an M2-like phenotype, as seen in the inverted ratio of TNF-a to IL-10 produced in response to LPS. We identified two separate mechanisms that are involved in this phenotypic switch. First, recognition of phosphatidylserine molecules on Apo-J cells by THP-1 macrophages downregulates TNF-a production. Second, phagocytosis of Apo-J cells by THP-1 macrophages and activation of PI3K/Akt signaling pathway upregulates IL-10 production. Conclusion: It is postulated that the phenotypic switch from a proinflammatory M1-like phenotype to an anti-inflammatory M2-like phenotype is dysregulated due to impaired efferocytosis of apoptotic neutrophils at the wound site. Our results demonstrate that NK-4 improves efferocytosis, suggesting its potential as a therapeutic strategy to resolve sustained inflammation in chronic wounds.


2021 ◽  
Author(s):  
Ahmad Farouk Musa ◽  
Cheang Jia Min

Wound healing remains a major issue in surgery. None of the existing treatment modalities in caring for wounds can yet claim to be the holy grail of wound management. Channa striatus, locally known in Malaysia as Haruan, is a freshwater air-breathing carnivorous fish that is proven to influence the different phases of wound healing. As a medicinal fish, not only does Haruan have a high content of amino and fatty acids, which are essential in collagen fibre synthesis during wound recovery, it also abounds in arachidonic acid and polyunsaturated fatty acids that promote prostaglandin synthesis, a vital component of the healing process. Moreover, its antinociceptive effects could potentially reduce wound pain, an important factor in wound healing. Proteomic studies show that a quarter of the total protein detected in freeze- and spray-dried C. striatus extract are actin, myosin and tropomyosin – all molecules that play a role in the wound healing process. Proteomic profiling also reveals that Haruan possesses two types of collagen namely collagen type-I and type-II that confer tensile strength during the healing process. It is proven that collagen along with other components of the extracellular matrix form the granulation tissue which, when contracted, closes the wound and concomitantly aligns the collagen fibres in the extracellular matrix. Hence, it is inferred that Haruan promotes the maturation of granulation tissue, thereby expediting the wound healing process itself. Consequently, it could mediate a faster recovery from surgical wound coupled with a lower incidence of wound infection due to an improved and accelerated wound healing process. Additionally, Haruan has demonstrated its ability in promoting angiogenesis and cell proliferation in wound bed preparation for skin grafting. Furthermore, a Haruan aerosol concentrate can act as a wound dressing at the donor site thereby enhancing the healing process while simultaneously exhibiting some antinociceptive properties. Haruan’s exceptional ability in promoting wound healing together with its potential use in skin grafting would be instrumental in the field of surgery. In essence, the cumulated benefits from all the processes involved would translate into a significant reduction of hospitalisation cost; that would immensely benefit not only the patient, but also the government.


Author(s):  
ASHISH KUMAR ◽  
VINAY PANDIT ◽  
UPENDRA NAGAICH

Objective: The present study focuses on the development and optimization of copper nanoparticles (CNPs) loaded hydrogel for the treatment of dermal burn injuries. Methods: CNPs gel was prepared by dispersing the variable concentration of polyvinylpyrrolidone (PVP K30) and hydroxypropyl methylcellulose (HPMC) in distilled water, PEG 400, and copper nanoparticles. factor screening study was performed for identification of influential factors, followed by optimization study using three-factor Box-Behnken design. Results: Optimized nanogel formulation, when compared to normal control (NC), shows a significant reduction of pro-inflammatory cytokines (IL-6 = 39.74 % and TNF-α =49.37%) and increased level of anti-inflammatory cytokines (IL-10 = 30.90%), indicating reduced inflammation. Further, the wound closure rate of CNPs gel shows significant (12.27 %) wound closure as compared to the NC group and complete wound closure (100 %) on the 14th day, indicating accelerated wound healing. Conclusion: the present investigation endorses accelerated scar-free, accelerated wound healing potential of copper nanoparticles gel with anti-inflammatory potential.


Sign in / Sign up

Export Citation Format

Share Document