scholarly journals PREPARATION AND EVALUATION OF COPPER NANOPARTICLES LOADED HYDROGEL FOR BURNS

Author(s):  
ASHISH KUMAR ◽  
VINAY PANDIT ◽  
UPENDRA NAGAICH

Objective: The present study focuses on the development and optimization of copper nanoparticles (CNPs) loaded hydrogel for the treatment of dermal burn injuries. Methods: CNPs gel was prepared by dispersing the variable concentration of polyvinylpyrrolidone (PVP K30) and hydroxypropyl methylcellulose (HPMC) in distilled water, PEG 400, and copper nanoparticles. factor screening study was performed for identification of influential factors, followed by optimization study using three-factor Box-Behnken design. Results: Optimized nanogel formulation, when compared to normal control (NC), shows a significant reduction of pro-inflammatory cytokines (IL-6 = 39.74 % and TNF-α =49.37%) and increased level of anti-inflammatory cytokines (IL-10 = 30.90%), indicating reduced inflammation. Further, the wound closure rate of CNPs gel shows significant (12.27 %) wound closure as compared to the NC group and complete wound closure (100 %) on the 14th day, indicating accelerated wound healing. Conclusion: the present investigation endorses accelerated scar-free, accelerated wound healing potential of copper nanoparticles gel with anti-inflammatory potential.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Cristina Sánchez-Quesada ◽  
Alicia López-Biedma ◽  
Estefania Toledo ◽  
José J. Gaforio

Anti-inflammatory effects of virgin olive oil (VOO) have been described recently, along with its wound healing effect. One of the main minor compounds found in VOO is squalene (SQ), which also possesses preventive effects against skin damage and anti-inflammatory properties. The inflammatory response is involved in wound healing and manages the whole process by macrophages, among others, as the main innate cells with a critical role in the promotion and resolution of inflammation for tissue repair. Because of that, this work is claimed to describe the role that squalene exerts in the immunomodulation of M1 proinflammatory macrophages, which are the first cells implicate in recent injuries. Pro- and anti-inflammatory cytokines were analysed using TPH1 cell experimental model. SQ induced an increase in the synthesis of anti-inflammatory cytokines, such as IL-10, IL-13, and IL-4, and a decrease in proinflammatory signals, such as TNF-α and NF-κB in M1 proinflammatory macrophages. Furthermore, SQ enhanced remodelling and repairing signals (TIMP-2) and recruitment signals of eosinophils and neutrophils, responsible for phagocytosis processes. These results suggest that SQ is able to promote wound healing by driving macrophage response in inflammation. Therefore, squalene could be useful at the resolution stage of wound healing.


2020 ◽  
Author(s):  
N Pearman ◽  
SR Moxon ◽  
Susan Carnachan ◽  
ME Cooke ◽  
EI Nep ◽  
...  

© 2019 Elsevier Ltd The Malvaceae family is a group of flowering plants that include approximately 244 genera, and 4225 species. Grewia mollis, and Hoheria populnea (lacebark), are examples of the Malvaceae family that are used in traditional medicine. For this study polysaccharide samples were extracted from the inner bark of Grewia mollis (unmodified (GG) and destarched grewia gum (GGDS)) and from the leaves of Hoheria populnea (lacebark polysaccharide (LB)). Wound healing properties of grewia gum and lacebark polysaccharides were investigated using 3T3 fibroblast cells cultured in supplemented DMEM. Deposition of collagen using van Gieson's stain, expression of the COL1A1 gene which encodes type I collagen using quantitative PCR, and chemotaxis using a scratch plate assay were analysed following treatment of cells with the test polysaccharides. Quantitative PCR results indicated that all three polysaccharides increased the levels of COL1A1 mRNA, with GG showing the greatest fold change. Histological staining also indicated that the fibroblasts treated with GG deposited more collagen than control cells. Additionally, scratch assay data indicated that simulated cell ‘wounds’ treated with each polysaccharide showed increased wound closure rate over a 36 h period post treatment, with GG exhibiting the greatest effect on wound closure. Analysis of the Malvaceae derived polysaccharides indicates that they could have a positive effect on mechanisms that are integral to wound healing, potentially providing greater scientific understanding behind their use in traditional medicine.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Na-Young Park ◽  
Giuseppe Valacchi ◽  
Yunsook Lim

Inflammatory response is considered the most important period that regulates the entire healing process. Conjugated linoleic acid (CLA), a class of linoleic acid positional and geometric isomers, is well known for its antioxidant and anti-inflammatory properties. We hypothesized that dietary CLA supplementation accelerates cutaneous wound healing by regulating antioxidant and anti-inflammatory functions. To investigate wound closure rates and inflammatory responses, we used a full-thickness excisional wound model after 2-week treatments with control, 0.5%, or 1% CLA-supplemented diet. Mice fed dietary CLA supplementation had reduced levels of oxidative stress and inflammatory markers. Moreover, the wound closure rate was improved significantly in mice fed a 1% CLA-supplemented diet during early stage of wound healing (inflammatory stage). We conclude that dietary CLA supplementation enhances the early stage of cutaneous wound healing as a result of modulating oxidative stress and inflammatory responses.


Author(s):  
Morenike Coker ◽  
Grace Adejo ◽  
Benjamin Emikpe ◽  
Victor Oyebanji

Background: This study examined the in vitro antibacterial property of extracts of Moringa oleifera and the effect of different concentrations of the ethyl-acetate extract on cutaneous wound using an ointment delivery base. The aim of the study was to screen the extracts with best antibacterial property and evaluate effectiveness of different concentrations of the best extract when delivery is modified to ensure prolonged contact and reduced frequency of administration using an ointment base delivery vehicle. Materials and Methods: Dried and pulverized leaves of Moringa oleifera were screened for secondary metabolites. Successive gradient extraction was carried out using n-hexane, ethyl acetate and methanol. Leaf extracts were screened against clinical wound isolates of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Proteus mirabilis using agar cup diffusion technique. The ethyl acetate extract was investigated for its healing efficiency on excision wound model in rats. The study made use of wistar rats (150-180 kg), randomized into Gentamicin, M. oleifera ointment (5% and 3.25%), and ointment base treatment groups. Treatments were applied topically on days 0, 7 and 14. The percentage wound closure rate was measured and histopathology of the healed wounds carried out. Results: In vitro antimicrobial screening showed that ethyl-acetate extract was effective against the test isolates. Topical application of ointment with 3.25% of the plant extract resulted in faster wound closure rate, rapid epithelization, resolution of granulation tissue, and remodeling at histology. Conclusion: This may be due to less interference by components of M. oleifera which appear to retard wound healing at higher concentrations. Therefore, M. oleifera 3.25% ointment preparation is recommended topically for wound healing.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4870
Author(s):  
Abdelsamed I. Elshamy ◽  
Naglaa M. Ammar ◽  
Heba A. Hassan ◽  
Walaa A. El-Kashak ◽  
Salim S. Al-Rejaie ◽  
...  

Wounds and burn injury are major causes of death and disability worldwide. Myricetin is a common bioactive flavonoid isolated naturally from the plant kingdom. Herein, a topical application of naturally isolated myricetin from the shoots of Tecomaria capensis v. aurea on excisional wound healing that was performed in albino rats. The wounded rats were treated every day with 10 and 20% myricetin for 14 days. During the experiment, the wound closure percentage was estimated at days 0, 7, and 14. Effects of myricetin on the inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and cluster of differentiation 68 (CD68) in the serum were evaluated using immunosorbent assay kits. The percentage of wound closure and contraction was delayed in wounded rats (67.35%) and was remarkably increased after treatment of wounded rats with myricetin; the treatment with 20% myricetin was the most potent (98.76%). Histological findings exhibited that 10% myricetin caused the formation of a large area of scarring at the wound enclosure and stratified squamous epithelium without the formation of papillae as in the control group. Treatment with 20% myricetin exhibited less area of scarring at the wound enclosure as well as re-epithelialization with a high density of fibroblasts and blood capillaries in the wound. Level elevations of serum pro-inflammatory cytokines, IL-1β, and TNF-α and macrophage CD68 were decreased in wounded rats treated with myricetin. Thus, it can be suggested that the enhancements in inflammatory cytokines as well as systemic reorganization after myricetin treatment may be recommended to play a crucial part in the promotion of wound healing. The findings suggest that treatment with a higher dose of myricetin was better in improving wound curing in rats. It could serve as a potent anti-inflammatory agent and can be used as an adjunctive or alternative agent in the future.


2013 ◽  
Vol 1 (2) ◽  
pp. 53-59
Author(s):  
Soheil Ashkani-Esfahani ◽  
Mohammad Hossein Imanieh ◽  
Aidin Meshksar ◽  
Mahsima Khoshneviszadeh ◽  
Ali Noorafshan ◽  
...  

Introduction: The present study was conducted to evaluate the wound healing effect of Arnebia euchroma (AE) extract, which is traditionally used in some Indian, Chinese, and Iranian tribes, on histomorphometrical parameters involved in the healing process of third-degree burn wounds by using stereological analyses. Methods and Materials: In an experimental study, 48 female Sprague-Dawley rats, each with a standard third-degree burn wound on the posterior surface of the neck, were divided into four groups; AE10 and AE20 groups were treated with carboxymethylcellulose (CMC) gels which contained AE hydroalcoholic extract at the concentration of 10% and 20%, respectively; the untreated burned (UB) group, which received no treatment; and the gel-base treated group. Wound closure rate, fibroblast proliferation, volume density of collagen bundles, length density, and mean diameter of the vessels were measured. Results: Wound closure rate, fibroblast population, volume density of collagen bundles, and length density of vessels were significantly improved by AE10 and AE20 in comparison with the gel-base and UB groups (P value <0.05). Conclusion: Although previous investigations on the different aspects of the wound healing effects of AE and the results of this study exhibited the positive effects of topical Arnebia euchroma on third-degree burn wound, introducing AE as an alternative wound healing agent requires more investigations on its efficacy on human, safety, and possible adverse effects.[GMJ. 2012;1(2):53-59]


Author(s):  
ASHISH KUMAR ◽  
VINAY PANDIT ◽  
UPENDRA NAGAICH

Objective: The purpose of this research was, synthesis of copper nanoparticles using environment friendly cementation method and evaluate their wound healing property on full-thickness excisional wound. Methods: Present study reports the synthesis of CNPs by single-step cementation method. Evaluation of CNPs was endorsed by morphological and chemical properties. Furthermore, CNPs was evaluated for its antibacterial potential and invitro hemocompatibility. Additionally, pharmacological evaluation of CNPs was assessed against excisional wound. Results: Characterization of final product indicate, particle size of CNPs were ranging from 100-150 nm. CNPs showed significant antibacterial activity (A= 2.1±0.1 mm, B =2.1±0.1 mm, C = 1.9±0.2 mm, at 10µg/ml), along with superior hemocompatibility (RBC cell survival 97±1 %). Further CNPs formulation shows increased level of anti-inflammatory cytokinin’s (IL-10, 42.7%) as compared to standard (STD), vehicle control, and normal control groups, attributed to accelerated wound healing (p<0.05 vs STD). Conclusion: The consequences the present investigation endorse the accelerated wound healing potential of CNPs with its anti-inflammatory potential.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Monika Styrczewska ◽  
Anna Kostyn ◽  
Anna Kulma ◽  
Grazyna Majkowska-Skrobek ◽  
Daria Augustyniak ◽  
...  

Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. Inin vitroproliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, butβ-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- andβ-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification.


2019 ◽  
Vol 10 (1) ◽  
pp. 11-24 ◽  
Author(s):  
Pawandeep Kaur ◽  
Diptiman Choudhury

AbstractFour hundred and twenty-two million people have diabetes due to excess free body glucose in their body fluids. Diabetes leads to various problems including retinopathy, neuropathy, arthritis, damage blood vessels etc; it also causes a delay in wound healing. Insufficiency of insulin is the main reason for diabetes-I and systemic insulin treatment is a remedy. The perspective of the potential use of insulin/insulin based drugs to treat chronic wounds in diabetic conditions is focused on in this review. At the site of the wound, TNF-ɑ, IFN-ϒ, IL-1β and IL-6 pro-inflammatory cytokines cause the generation of free radicals, leading to inflammation which becomes persistent in diabetes. Insulin induces expression of IL-4/IL-13, IL-10 anti-inflammatory cytokines etc which further down-regulates NFkβP50/P65 assembly. Insulin shifts the equilibrium towards NFkβP50/P50 which leads to down-regulation of inflammatory cytokines such as IL-6, IL-10 etc through STAT6, STAT3 and c-Maf activation causing nullification of an inflammatory condition. Insulin also promotes protein and lipid biosynthesis which indeed promotes wound recovery. Here, in this article, the contributions of insulin in controlling wound tissue microenvironments and remodulation of tissue have been summarised, which may be helpful to develop novel insulin-based formulation(s) for effective treatment of wounds in diabetic conditions.


2006 ◽  
Vol 290 (5) ◽  
pp. L849-L855 ◽  
Author(s):  
D. S. Allen-Gipson ◽  
J. Wong ◽  
J. R. Spurzem ◽  
J. H. Sisson ◽  
T. A. Wyatt

Adenosine produces a wide variety of physiological effects through the activation of specific adenosine receptors (A1, A2A, A2B, A3). Adenosine, acting particularly at the A2A adenosine receptor (A2AAR), is a potent endogenous anti-inflammatory agent and sensor of inflammatory tissue damage. The complete healing of wounds is the final step in a highly regulated response to injury. Recent studies on epidermal wounds have identified the A2AAR as the main adenosine receptor responsible for altering the kinetics of wound closure. We hypothesized that A2AAR promotes wound healing in bronchial epithelial cells (BECs). To test this hypothesis, the human BEC line BEAS-2B and bovine BECs (BBECs) were used. Real-time RT-PCR of RNA from unstimulated BEAS-2B cells revealed transcriptional expression of A1, A2A, A2B and A3 receptors. Western blot analysis of lysates from BEAS-2B cells and BBECs detected a single band at 44.7 kDa in both the BECs, indicating the presence of A2AAR. In a wound healing model, we found that adenosine stimulated wound repair in cultured BBECs in a concentration-dependent manner, with an optimal closure rate observed between 4 and 6 h. Similarly, the A2AAR agonist 5′-( N-cyclopropyl)carboxamidoadenosine (CPCA) augmented wound closure, with a maximal closure rate occurring between 4 and 6 h. Inhibition of A2AAR with ZM-241385, a known A2AAR antagonist, impeded wound healing. In addition, ZM-241385 also attenuated adenosine-mediated wound repair. Kinase studies revealed that adenosine-stimulated airway repair activates PKA by ligating A2AAR. Collectively, the data suggest that the A2AAR is involved in BEC adenosine-stimulated wound healing and may prove useful in understanding purinergic-mediated actions on airway epithelial repair.


Sign in / Sign up

Export Citation Format

Share Document