scholarly journals Precession Azimuth Sensing with Low-Noise Molecular Electronics Angular Sensors

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Dmitry L. Zaitsev ◽  
Vadim M. Agafonov ◽  
Egor V. Egorov ◽  
Alexander N. Antonov ◽  
Vladimir G. Krishtop

This paper describes the use of MET-based low-noise angular motion sensors to precisely determine azimuth direction in a dynamic-scheme method of measuring the Earth’s rotational velocity vector. The scheme includes sensor installation on a rotating platform so that it could scan the space and seek for the position of the highest Earth’s rotation vector projection on its axis. This method is very efficient provided a low-noise sensor is used. A low-cost angular sensor based on MET (molecular electronic transduction) technology has been used. The sensors of this kind were originally developed for seismic activity monitoring and are well known for very good noise performance and high sensitivity. This approach, combined with the use of special signal processing algorithms, allowed reaching the accuracy of 0.2°, while the measurement time was less than 100 seconds.

2017 ◽  
Vol 7 (1.5) ◽  
pp. 1
Author(s):  
Mahesh Mudavath ◽  
K. Hari Kishore

This paper describes a layout of a CMOS Low Noise Amplifier for reconfigurable packages which include GPS, GSM Wi-Fi applications. The improvement of a notably linear Radio front-stop, able to function with Galileo and GPS satellite signals suitable for coexisting in a mobile opposed environment for area based offerings, pleasing the fundamental necessities for a mass market product which includes low cost, low footprint, good accuracy, low strength intake and high sensitivity. primarily based on a wideband enter matching, the LNA stages cowl all band of hobby even as reaching a great change-off between excessive gain, low noise parent and coffee electricity intake. The complete simulation analysis of the circuit results in the frequency range of 1.4 GHz to 2 GHz. The noise figure is 1.8 dB at 1.4GHz and rises to 3.4 dB at 2 GHz. The input return and output return losses (S11, S22) of the LNA at a frequency range between 1.4 GHz and 2 GHz are S11= -12 dB, S22 =-44.73 dB at 1.77 GHz and S22 =-26.47 dB at 2 GHz. The overall gain of the LNA (S21) is 13 dB at 1.4025 GHz, 3rd order input intercept point (IIP3) = -3.16 dBm and -1dB compression point is -12.56 dBm. Input Impedance of 50Ω, 3dB Power Bandwidth of 450MHz, and Power Dissipation of 2.7mW at 1.2V power supply.


2014 ◽  
Vol 664 ◽  
pp. 268-273
Author(s):  
Yun Tian Teng ◽  
Xing Xing Hu ◽  
Hong Ya Lu

Magnetoelectric seismometer has many outstanding features, such as low cost, small size, light weight, high sensitivity, low noise, good high frequency response, and reliable operation, simple set up, so these type of seismometer is widely used in several areas. However, because the structure of magnetoelectric seismometer (inertial mass and elastic support module), there has the material and mechanical structure limitation, so the inherent frequency is around between 5 to 30Hz, hard to be lower, hence, the low frequency characteristic is poor. To extend the seismometer's range of application, post compensation is needed. The researchers from both home and aboard proposed many different method to deal with the low frequency response of this seismometer, such as “inverse filter” method, “Lippmann” method, which uses negative resistance and feedback coil. These methods have got some results separately. In this paper, we will propose a low frequency integral method to extend the seismometer's frequency response. It is accomplished through balanced integration and high precision chips to suppress the circuit drifting and noise interference. The results from vibration table shows, after integration, the seismometer's low frequency corner frequency is extended from 2 Hz to under 0.1 Hz, the sensitivity is enhanced from 200V/m·s-1 to 400V/m·s-1.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1119 ◽  
Author(s):  
Yin ◽  
Fu ◽  
El-Sankary

A process-voltage-temperature (PVT)-robust, low power, low noise, and high sensitivity, super-regenerative (SR) receiver is proposed in this paper. To enable high sensitivity and robust-PVT operation, a fast locking phase-locked-loop (PLL) with initial random phase error reduction is proposed to continuously adjust the center frequency deviations of the SR oscillator (SRO) without interrupting the input data stream. Additionally, a concurrent quenching waveform (CQW) technique is devised to improve the SRO sensitivity and its noise performance. The proposed SRO architecture is controlled by two separate biasing branches to extend the sensitivity accumulation (SA) phase and reduce its noise during the SR phase, compared to the conventional optimal quenching waveform (OQW). The proposed SR receiver is implemented at 2.46 GHz center frequency in 180 nm SMIC CMOS technology and achieves better sensitivity, power consumption, noise performance, and PVT immunity compared with existent SR receiver architectures.


2012 ◽  
Vol 268-270 ◽  
pp. 1548-1552
Author(s):  
Hui Li

A micro flowmeter was designed based on MEMS sensor and weak signal acquisition technique. The MEMS sensor adopted VO2 thermal resistor suspended structure, which has good heat isolation performance and high sensitivity. The flow channel was made up of SU-8 gum, and this technology is simple and suitable for batch production because of low cost. The following weak signal acquisition module used super low bias current operational amplifier, aided with Guard ring protection, and 24 bit high resolution ADC to realize high resolution, low noise data acquisition through reasonable layout and ground design. The experiment shows that the entire flowmeter has favorable linearity and sensitivity in the velocity range from 0 to 30mL/min at a certain suitable offset voltage. So it can satisfy the applications in the fields such as biochemical detection, medicine and so on.


Author(s):  
T. P. Nolan

Thin film magnetic media are being used as low cost, high density forms of information storage. The development of this technology requires the study, at the sub-micron level, of morphological, crystallographic, and magnetic properties, throughout the depth of the deposited films. As the microstructure becomes increasingly fine, widi grain sizes approaching 100Å, the unique characterization capabilities of transmission electron microscopy (TEM) have become indispensable to the analysis of such thin film magnetic media.Films were deposited at 225°C, on two NiP plated Al substrates, one polished, and one circumferentially textured with a mean roughness of 55Å. Three layers, a 750Å chromium underlayer, a 600Å layer of magnetic alloy of composition Co84Cr14Ta2, and a 300Å amorphous carbon overcoat were then sputter deposited using a dc magnetron system at a power of 1kW, in a chamber evacuated below 10-6 torr and filled to 12μm Ar pressure. The textured medium is presently used in industry owing to its high coercivity, Hc, and relatively low noise. One important feature is that the coercivity in the circumferential read/write direction is significandy higher than that in the radial direction.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1550
Author(s):  
Dominic Greiffenberg ◽  
Marie Andrä ◽  
Rebecca Barten ◽  
Anna Bergamaschi ◽  
Martin Brückner ◽  
...  

Chromium compensated GaAs or GaAs:Cr sensors provided by the Tomsk State University (Russia) were characterized using the low noise, charge integrating readout chip JUNGFRAU with a pixel pitch of 75 × 75 µm2 regarding its application as an X-ray detector at synchrotrons sources or FELs. Sensor properties such as dark current, resistivity, noise performance, spectral resolution capability and charge transport properties were measured and compared with results from a previous batch of GaAs:Cr sensors which were produced from wafers obtained from a different supplier. The properties of the sample from the later batch of sensors from 2017 show a resistivity of 1.69 × 109 Ω/cm, which is 47% higher compared to the previous batch from 2016. Moreover, its noise performance is 14% lower with a value of (101.65 ± 0.04) e− ENC and the resolution of a monochromatic 60 keV photo peak is significantly improved by 38% to a FWHM of 4.3%. Likely, this is due to improvements in charge collection, lower noise, and more homogeneous effective pixel size. In a previous work, a hole lifetime of 1.4 ns for GaAs:Cr sensors was determined for the sensors of the 2016 sensor batch, explaining the so-called “crater effect” which describes the occurrence of negative signals in the pixels around a pixel with a photon hit due to the missing hole contribution to the overall signal causing an incomplete signal induction. In this publication, the “crater effect” is further elaborated by measuring GaAs:Cr sensors using the sensors from 2017. The hole lifetime of these sensors was 2.5 ns. A focused photon beam was used to illuminate well defined positions along the pixels in order to corroborate the findings from the previous work and to further characterize the consequences of the “crater effect” on the detector operation.


Sign in / Sign up

Export Citation Format

Share Document