scholarly journals Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
L. D. Zhu ◽  
Z. H. Li ◽  
E. Hiltunen

In response to the energy crisis, global warming, and climate changes, microalgae have received a great deal of attention as a biofuel feedstock. Due to a high lipid content in microalgal cells, microalgae present as a promising alternative source for the production of biodiesel. Environmental and culturing condition variations can alter lipid production as well as chemical compositions of microalgae. Therefore, application of the strategies to activate lipid accumulation opens the door for lipid overproduction in microalgae. Until now, many original studies regarding the approaches for enhanced microalgal lipid production have been reported in an effort to push forward the production of microalgal biodiesel. However, the current literature demonstrates fragmented information available regarding the strategies for lipid production improvement. From the systematic point of view, the review highlights the main approaches for microalgal lipid accumulation induction to expedite the application of microalgal biodiesel as an alternative to fossil diesel for sustainable environment. Of the several strategies discussed, the one that is most commonly applied is the design of nutrient (e.g., nitrogen, phosphorus, and sulfur) starvation or limitation. Other viable approaches such as light intensity, temperature, carbon dioxide, salinity stress, and metal influence can also achieve enhanced microalgal lipid production.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ahmad Farhad Talebi ◽  
Masoud Tohidfar ◽  
Seyedeh Mahsa Mousavi Derazmahalleh ◽  
Alawi Sulaiman ◽  
Azhari Samsu Baharuddin ◽  
...  

Exploitation of renewable sources of energy such as algal biodiesel could turn energy supplies problem around. Studies on a locally isolated strain ofDunaliellasp. showed that the mean lipid content in cultures enriched by 200 mg L−1myoinositol was raised by around 33% (1.5 times higher than the control). Similarly, higher lipid productivity values were achieved in cultures treated by 100 and 200 mg L−1myoinositol. Fluorometry analyses (microplate fluorescence and flow cytometry) revealed increased oil accumulation in the Nile red-stained algal samples. Moreover, it was predicted that biodiesel produced from myoinositol-treated cells possessed improved oxidative stability, cetane number, and cloud point values. From the genomic point of view, real-time analyses revealed that myoinositol negatively influenced transcript abundance ofAccDgene (one of the key genes involved in lipid production pathway) due to feedback inhibition and that its positive effect must have been exerted through other genes. The findings of the current research are not to interprete that myoinositol supplementation could answer all the challenges faced in microalgal biodiesel production but instead to show that “there is a there there” for biochemical modulation strategies, which we achieved, increased algal oil quantity and enhanced resultant biodiesel quality.


2021 ◽  
Vol 13 (11) ◽  
pp. 6074
Author(s):  
Esther Khayanga Sumbule ◽  
Mary Kivali Ambula ◽  
Isaac Maina Osuga ◽  
Janice Ghemoh Changeh ◽  
David Miano Mwangi ◽  
...  

The acceptance of eco-friendly black soldier fly larvae meal (BSFLM) as sustainable alternative protein ingredient in poultry feeds continues to gain momentum worldwide. This study evaluates the impact of BSFLM in layer chick and grower diets on the growth, carcass quality and economic returns. Mean weekly weight gain and total live weight per chick and grower varied significantly. The highest final weight gain was achieved when birds were provided diet with 25.6% BSFLM. Average daily feed intake (ADFI), average daily weight gain (ADG) and overall weight gain of the chick varied significantly, except for the feed conversion ratio (FCR). For grower birds, ADFI, ADG, FCR and overall weight gain did not vary significantly across the various feeding regimes. The weight of the wings and drumsticks had a quadratic response with a maximum weight obtained at 33% inclusion of BSFLM. The weight of the internal organs were not significantly affected by dietary types. Positive cost–benefit ratio and return on investment was recorded for diet types with higher BSFLM inclusion levels (>75%). Diets with 25% and 100% BSFLM inclusion were the most suitable and cost-effective, respectively. Thus, BSFLM represents a promising alternative source of protein that could be sustainably used in the poultry industries.


2020 ◽  
Vol 58 (1) ◽  
pp. 71-83
Author(s):  
Elahe Mansouri Gandomani ◽  
Nematollah Rashidnejad-Omran ◽  
Amir Emamjomeh ◽  
Pietro Vignola ◽  
Tahereh Hashemzadeh

ABSTRACT Turquoise, CuAl6(PO4)4(OH)8·4H2O, belongs to the turquoise group, which consists of turquoise, chalcosiderite, aheylite, faustite, planerite, and UM1981-32-PO:FeH. In order to study turquoise-group solid solutions in samples from the Neyshabour and Meydook mines, 17 samples were selected and investigated using electron probe microanalysis. In addition, their major elements were compared in order to evaluate the feasibility of distinguishing the provenance of Persian turquoises. The electron microprobe data show that the studied samples are not constituted of pure turquoise (or any other pure endmember) and belong, from the chemical point of view, to turquoise-group solid solutions. In a turquoise–planerite–chalcosiderite–unknown mineral quaternary solid solution diagram, the chemical compositions of the analyzed samples lie along the turquoise–planerite line with minor involvement of chalcosiderite and the unknown mineral. Among light blue samples with varying hues and saturations from both studied areas, planerite is more abundant among samples from Meydook compared with samples from Neyshabour. Nevertheless, not all the light blue samples are planerite. This study demonstrates that distinguishing the deposit of origin for isochromatic blue and green turquoises, based on electron probe microanalysis method and constitutive major elements, is not possible.


2019 ◽  
Vol 8 (4) ◽  
pp. 8616-8620

Agricultural growth has been severely affected due to the constraints in irrigation-energy deficits. Due to the availability of abundant solar energy especially in India for all days, solar powered irrigation technology has been a promising alternative source compared to canonical electricity and diesel focused pumping systems. How to furnish an electric power suitable to drive an irrigation pump for agricultural purposes in isolated areas using solar PV panels is the problem. This project deals with solving a local irrigation problem in countries. In this proposed project a simple design of simulation and analysis of a PMSM fed by a solar PV, modelled through DC/DC converter controlled by a MPPT and for utilizing the power from Solar. Compared to all converters, luo converters is the advanced technology. POSL luo converter are of new DC-DC step-up converter. This POSL luo converter performs positive to positive DC-DC voltage increasing conversion. The hardware implementation has been done for positive output super-lift luo converter respectively.


Animals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 136 ◽  
Author(s):  
Waheed Sayed ◽  
Nashaat Ibrahim ◽  
Mahmoud Hatab ◽  
Fen Zhu ◽  
Birgit Rumpold

A transformation of current livestock production towards a more sustainable operation is crucial to face nutritional and environmental challenges. There is an urgent demand for more sustainable high-quality feed sources to reduce environmental costs. Insects pose a potential alternative since they can be reared sustainably on food and feed residues. Know-how in mass rearing already exists for insect species used in biological pest control, such as the African cotton leafworm Spodoptera littoralis and the peach fruit fly Bactrocera zonata. The impact of a replacement of 50% of soybean meal by S. littoralis and B. zonata meal, respectively, on seven-days-old Japanese quail chicks was investigated in feeding trials. Concomitantly, the chemical compositions of the two insect meals and soybean meal were determined and compared. It was observed that the insect meals had higher protein and fat contents, lower carbohydrate contents and contained more saturated fatty acids than soybean meal. They also had higher methionine, and S. littoralis had a higher lysine content. Feeding trials resulted in improved growth, feed performance parameters, carcass characteristics, and biochemical indices for both insect meals. Consequently, both insect meals represent a promising alternative to soy in the feed of Japanese quail chicks.


2020 ◽  
Vol 153 ◽  
pp. 112547
Author(s):  
Xueping Feng ◽  
Jing Liu ◽  
Yawei Zhang ◽  
Wenli Wu ◽  
Yiying Pan ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3648
Author(s):  
Savienne M. F. E. Zorn ◽  
Cristiano E. R. Reis ◽  
Messias B. Silva ◽  
Bo Hu ◽  
Heizir F. De Castro

This study aims to evaluate the potential of consortium biomass formation between Mucor circinelloides, an oleaginous filamentous fungal species, and Chlorella vulgaris, in order to promote a straightforward approach to harvest microalgal cells and to evaluate the lipid production in the consortium system. A synthetic medium with glucose (2 g·L−1) and mineral nutrients essential for both fungi and algae was selected. Four different inoculation strategies were assessed, considering the effect of simultaneous vs. separate development of fungal spores and algae cells, and the presence of a supporting matrix aiming at the higher recovery of algae cell rates. The results were evaluated in terms of consortium biomass composition, demonstrating that the strategy using a mature fungal mycelium with a higher algae count may provide biomass samples with up to 79% of their dry weight as algae, still promoting recovery rates greater than 97%. The findings demonstrate a synergistic effect on the lipid accumulation by the fungal strain, at around a fourfold increase when compared to the axenic control, with values in the range of 23% of dry biomass weight. Furthermore, the fatty acid profile from the samples presents a balance between saturated and unsaturated fatty acids that is likely to present an adequate balance for applications such as biodiesel production.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2346
Author(s):  
Theresa Greupner ◽  
Elisabeth Koch ◽  
Laura Kutzner ◽  
Andreas Hahn ◽  
Nils Helge Schebb ◽  
...  

The omega-3 (n3) polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with health benefits. The primary dietary source of EPA and DHA is seafood. Alpha-linoleic acid (ALA) has not been shown to be a good source for EPA and DHA; however, stearidonic acid (SDA)—which is naturally contained in echium oil (EO)—may be a more promising alternative. This study was aimed at investigating the short-term n3 PUFA metabolism after the ingestion of a single dose of EO. Healthy young male subjects (n = 12) ingested a single dose of 26 g of EO after overnight fasting. Plasma fatty acid concentrations and relative amounts were determined at baseline and 2, 4, 6, 8, 24, 48, and 72 h after the ingestion of EO. During the whole examination period, the participants received standardized nutrition. Plasma ALA and SDA concentrations increased rapidly after the single dose of EO. Additionally, EPA and DPAn3 concentrations both increased significantly by 47% after 72 h compared to baseline; DHA concentrations also significantly increased by 21% after 72 h. To conclude, EO increases plasma ALA, SDA, EPA, DPAn3, and DHA concentrations and may be an alternative source for these n3 PUFAs.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenhua Yang ◽  
Yue Zhao ◽  
Zhiyong Liu ◽  
Chenfeng Liu ◽  
Zhipeng Hu ◽  
...  

Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana.


Sign in / Sign up

Export Citation Format

Share Document