scholarly journals Biochemical Modulation of Lipid Pathway in MicroalgaeDunaliellasp. for Biodiesel Production

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ahmad Farhad Talebi ◽  
Masoud Tohidfar ◽  
Seyedeh Mahsa Mousavi Derazmahalleh ◽  
Alawi Sulaiman ◽  
Azhari Samsu Baharuddin ◽  
...  

Exploitation of renewable sources of energy such as algal biodiesel could turn energy supplies problem around. Studies on a locally isolated strain ofDunaliellasp. showed that the mean lipid content in cultures enriched by 200 mg L−1myoinositol was raised by around 33% (1.5 times higher than the control). Similarly, higher lipid productivity values were achieved in cultures treated by 100 and 200 mg L−1myoinositol. Fluorometry analyses (microplate fluorescence and flow cytometry) revealed increased oil accumulation in the Nile red-stained algal samples. Moreover, it was predicted that biodiesel produced from myoinositol-treated cells possessed improved oxidative stability, cetane number, and cloud point values. From the genomic point of view, real-time analyses revealed that myoinositol negatively influenced transcript abundance ofAccDgene (one of the key genes involved in lipid production pathway) due to feedback inhibition and that its positive effect must have been exerted through other genes. The findings of the current research are not to interprete that myoinositol supplementation could answer all the challenges faced in microalgal biodiesel production but instead to show that “there is a there there” for biochemical modulation strategies, which we achieved, increased algal oil quantity and enhanced resultant biodiesel quality.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Kukkala Kiran Kumar ◽  
Farha Deeba ◽  
Sauraj ◽  
Yuvraj Singh Negi ◽  
Naseem A. Gaur

Abstract Background To meet the present transportation demands and solve food versus fuel issue, microbial lipid-derived biofuels are gaining attention worldwide. This study is focussed on high-throughput screening of oleaginous yeast by microwave-aided Nile red spectrofluorimetry and exploring pongamia shell hydrolysate (PSH) as a feedstock for lipid production using novel oleaginous yeast Rhodotorula pacifica INDKK. Results A new oleaginous yeast R. pacifica INDKK was identified and selected for microbial lipid production. R. pacifica INDKK produced maximum 12.8 ± 0.66 g/L of dry cell weight and 6.78 ± 0.4 g/L of lipid titre after 120 h of growth, showed high tolerance to pre-treatment-derived inhibitors such as 5-hydroxymethyl furfural (5-HMF), (2 g/L), furfural (0.5 g/L) and acetic acid (0.5 g/L), and ability to assimilate C3, C5 and C6 sugars. Interestingly, R. pacifica INDKK showed higher lipid accumulation when grown in alkali-treated saccharified PSH (AS-PSH) (0.058 ± 0.006 g/L/h) as compared to acid-treated detoxified PSH (AD-PSH) (0.037 ± 0.006 g/L/h) and YNB medium (0.055 ± 0.003 g/L/h). The major fatty acid constituents are oleic, palmitic, linoleic and linolenic acids with an estimated cetane number (CN) of about 56.7, indicating the good quality of fuel. Conclusion These results suggested that PSH and R. pacifica INDKK could be considered as potential feedstock for sustainable biodiesel production.


2014 ◽  
Vol 17 (2) ◽  
pp. 15-26
Author(s):  
Lan Thi My Nguyen ◽  
Tham Thi Mong Doan ◽  
Hung Hiep Huynh ◽  
Loan Thi Thanh Le ◽  
Ho Thanh Pham ◽  
...  

Microalgal biodiesel is considered an alternative to fossil fuel and also potentially reduce the introduction of new CO2 by displacing fossil hydrocarbon fuels. Nowadays, researching on renewable energy is mainly focus on biodiesel from microalgae due to their fast growth rates and high-yield production. In order to improve this field in Vietnam, we isolated some local species and used rapid screening method for lipid production in microalgae based on Nile Red fluorescence. Futhermore, providing a reference for the future biodiesel production using these microalgal species, we also determined lipid contents of these species ranged from 8.89% to 29.12% in natural cuturing conditions by soxhlet and Bligh & Dyer methods.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
L. D. Zhu ◽  
Z. H. Li ◽  
E. Hiltunen

In response to the energy crisis, global warming, and climate changes, microalgae have received a great deal of attention as a biofuel feedstock. Due to a high lipid content in microalgal cells, microalgae present as a promising alternative source for the production of biodiesel. Environmental and culturing condition variations can alter lipid production as well as chemical compositions of microalgae. Therefore, application of the strategies to activate lipid accumulation opens the door for lipid overproduction in microalgae. Until now, many original studies regarding the approaches for enhanced microalgal lipid production have been reported in an effort to push forward the production of microalgal biodiesel. However, the current literature demonstrates fragmented information available regarding the strategies for lipid production improvement. From the systematic point of view, the review highlights the main approaches for microalgal lipid accumulation induction to expedite the application of microalgal biodiesel as an alternative to fossil diesel for sustainable environment. Of the several strategies discussed, the one that is most commonly applied is the design of nutrient (e.g., nitrogen, phosphorus, and sulfur) starvation or limitation. Other viable approaches such as light intensity, temperature, carbon dioxide, salinity stress, and metal influence can also achieve enhanced microalgal lipid production.


2018 ◽  
Author(s):  
◽  
Johnson Tungamirai Zininga

Filamentous fungi are well-known sources of a wide variety of industrially-useful biomolecules. This study demonstrates the applicability of a newly isolated oleaginous fungi Mucor circinelloides ZSKP for lipid and chitosan production. Parameters affecting co-production were identified and were statistically optimized, which resulted in a 3–fold improvement in lipid production. The lipid profile showed a high content of unsaturated fatty acids including oleic, linolenic and linoleic acids, while palmitic acid was the major saturated fatty acid (21%). A comparative study to evaluate the efficacy of enzymatic and chemical treatments for biodiesel production from fungal lipids and sunflower oil revealed slightly enhanced production of biodiesel from fungal lipids, using a commercial lipase. The biodiesel synthesized using lipids from M. circinelloides ZSKP satisfied standard specifications and had a higher cetane number (56), lower kinematic viscosity (4.6 mm2/s) and lower acid number (0.03) compared to sunflower oil. Upon optimizing chitosan production and extraction processes the chitosan production was improved 2-fold. The fungal chitosan showed antimicrobial properties and was more effective against Aspergillus niger A chitosan spray was developed which was able to increase the shelf life of fresh fruit produce. These results indicate that Mucor circinelloides ZSKP is a promising candidate for concurrent production of lipids and the versatile bio-polymer chitosan.


2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Sayeda M. Abdo ◽  
Guzine I. El Diwani ◽  
Kamel M. El-Khatib ◽  
Sanaa A. Abo El-Enin ◽  
Mohammed I. El-Galad ◽  
...  

Abstract Background Microalgae cells can be identified as a potential source for new and renewable energy. The economic investigation for biodiesel and bio-active compound production from the microalgae community (Bloom), which are collected from the high rate algal pond (HRAP) constructed to treat municipal wastewater at Zenin wastewater treatment plant, Giza, was the main target of study. Results The microscopical examination showed that Scenedesmus obliquus is the dominant species. The total carotenoids were extracted using jojoba oil and determined by high-performance liquid chromatography (HPLC) to reach 81.44 μg/g. The biodiesel production through acid transesterification reaction recorded 70.6% of fatty acid methyl ester content with high cetane number (44) and low acid value. Such results prove that the obtained biodiesel has better ignition quality. The total phenolic and flavonoid compounds have been derived from the remaining biomass to give 5.36 ± 0.03 and 1.50 ± 0.19 mg/g respectively. Finally, total proteins and carbohydrates content in algal cells were recorded 54.3 and 1.5 mg/g successively Conclusion The preliminary economic evaluation showed that the production of biodiesel and carotenoids from the microalgae growing in municipal wastewater can be considered, as a techno-economic feasible process.


Author(s):  
Ikumi Umetani ◽  
Eshetu Janka ◽  
Michal Sposób ◽  
Chris J. Hulatt ◽  
Synne Kleiven ◽  
...  

AbstractBicarbonate was evaluated as an alternative carbon source for a green microalga, Tetradesmus wisconsinensis, isolated from Lake Norsjø in Norway. Photosynthesis, growth, and lipid production were studied using four inorganic carbon regimes: (1) aeration only, (2) 20 mM NaHCO3, (3) 5% (v/v) CO2 gas, and (4) combination of 20 mM NaHCO3 and 5% CO2. Variable chlorophyll a fluorescence analysis revealed that the bicarbonate treatment supported effective photosynthesis, while the CO2 treatment led to inefficient photosynthetic activity with a PSII maximum quantum yield as low as 0.31. Conversely, bicarbonate and CO2 treatments gave similar biomass and fatty acid production. The maximum growth rate, the final cell dry weight, and total fatty acids under the bicarbonate-only treatment were 0.33 (± 0.06) day−1, 673 (± 124) mg L−1 and 75 (± 5) mg g−1 dry biomass, respectively. The most abundant fatty acid components were α-linolenic acid and polyunsaturated fatty acids constituting 69% of the total fatty acids. The fatty acid profile eventuated in unsuitable biodiesel fuel properties such as high degree of unsaturation and low cetane number; however, it would be relevant for food and feed applications. We concluded that bicarbonate could give healthy growth and comparative product yields as CO2.


2021 ◽  
Vol 36 (1) ◽  
pp. 53-66
Author(s):  
C. Esonye ◽  
O. D Onukwuli ◽  
S. O. Momoh

Currently the major challenge of biodiesel application as a replacement to petrodiesel is its industrial production sustainability.Consequently, the successful scale-up of laboratory results in transesterification requires so much information obtained through chemical kinetics.This paper presents the kinetics and thermodynamic study of alkali-homogeneous irreversible methanolysis of seed oil derived from African pear. The transesterification process was carried out from 0-100 minutes at temperature range of 55-65°C. The reaction mixture compositions were ascertained using gas chromatography- flame ionization detector (GC-FID) technique. Rate constants of the triglyceride (Tg), diglycerides (Dg) and monoglycerides(Mg) hydrolysis were in the range of 0.0140- 0.07810 wt%/min and increased with increase in temperature. The rate of reaction was found to increase with increase in temperature. Activation energies were found to be 6.14, 20.01 and 28.5kcal/mol at 55, 60 and 65oC respectively. Tg hydrolysis to Dg was observed asthe rate determining step while the reaction agreed with second order principles. A biodiesel yield of 93.02% was obtained with cloud point of 10°C , flash point of 125°C , pour point of 4°C , calorific value of 34.4MJ/kg, and cetane number of 54.90 which satisfy EN14214 and ASTM D 6751 standards. Results presented in this report would serve as idealized conditions for industrial scale up of biodiesel production from African pear seed oil. Keywords:Kinetics; methanolysis; rate constants; activation energy; African pear seed oil; biodiesel


Author(s):  
K. Malins ◽  
V. Kampars ◽  
R. Kampare ◽  
T. Rusakova

The transesterification of vegetable oil using various kinds of alcohols is a simple and efficient renewable fuel synthesis technique. Products obtained by modifying natural triglycerides in transesterification reaction substitute fossil fuels and mineral oils. Currently the most significant is the biodiesel, a mixture of fatty acid methyl esters, which is obtained in a reaction with methanol, which in turn is obtained from fossil raw materials. In biodiesel production it would be more appropriate to use alcohols which can be obtained from renewable local raw materials. Ethanol rouses interest as a possible reagent, however, its production locally is based on the use of grain and therefore competes with food production so it would implicitly cause increase in food prices. Another raw material option is alcohols that can be obtained from furfurole. Furfurole is obtained in dehydration process from pentose sugars which can be extracted from crop straw, husk and other residues of agricultural production. From furfurole the tetrahydrofurfuryl alcohol (THFA), a raw material for biodiesel, can be produced. By transesterifying rapeseed oil with THFA it would be possible to obtain completely renewable biodiesel with properties very close to diesel [2-4]. With the purpose of developing the synthesis of such fuel, in this work a three-stage synthesis of rapeseed oil tetrahydrofurfurylesters (ROTHFE) in sulphuric acid presence has been performed, achieving product with purity over 98%. The most important qualitative factors of ROTHFE have been determined - cold filter plugging point, cetane number, water content, Iodine value, phosphorus content, density, viscosity and oxidative stability.


2021 ◽  
Vol 16 (10) ◽  
pp. 144-155
Author(s):  
Van Lal Michael Chhandama ◽  
Belur Kumudini Satyan

Microalgae emerged as a competent feedstock for biodiesel production because of high growth rate and lipid content. This work focuses on isolation of novel microalgal strain from different sources of water for the production of biodiesel. The isolated microalgae, Pleurastrum insigne possessed high lipid content (~28 % dcw), further optimized to 57.06 % dcw using a statistical design (CCD) under Response Surface Methodology. Lipid production was optimized by nutrient (nitrogen and phosphorus) and pH stress. The different type of fatty acids present in the optimized lipid was also profiled using GCMS. Biodiesel yield was found to be 82.14 % of the total lipid and the fuel properties tested have met IS, ASTM and EN biodiesel standards.


Sign in / Sign up

Export Citation Format

Share Document