scholarly journals Thrombosis, Neuroinflammation, and Poststroke Infection: The Multifaceted Role of Neutrophils in Stroke

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Johanna Ruhnau ◽  
Juliane Schulze ◽  
Alexander Dressel ◽  
Antje Vogelgesang

Immune cells can significantly predict and affect the clinical outcome of stroke. In particular, the neutrophil-to-lymphocyte ratio was shown to predict hemorrhagic transformation and the clinical outcome of stroke; however, the immunological mechanisms underlying these effects are poorly understood. Neutrophils are the first cells to invade injured tissue following focal brain ischemia. In these conditions, their proinflammatory properties enhance tissue damage and may promote ischemic incidences by inducing thrombus formation. Therefore, they constitute a potential target for therapeutic approaches and prevention of stroke. Indeed, in animal models of focal brain ischemia, neutrophils have been targeted with successful results. However, even in brain lesions, neutrophils also exert beneficial effects, because they are involved in triggering immunological removal of cell debris. Furthermore, intact neutrophil function is essential for maintaining immunological defense against bacterial infections. Several studies have demonstrated that stroke-derived neutrophils displayed impaired bacterial defense capacity. Because infections are known to impair the clinical course of stroke, therapeutic interventions that target neutrophils should preserve or even restore their function outside the central nervous system (CNS). This complex situation requires well-tailored therapeutic approaches that can effectively tackle immune cell invasion in the brain but avoid increasing poststroke infections.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Francesca Vinchi ◽  
Emanuela Tolosano

Hemolysis results in the release of hemoglobin and heme into the bloodstream and is associated with the development of several pathologic conditions of different etiology, including hemoglobinopathies, hemolytic anemias, bacterial infections, malaria, and trauma. In addition, hemolysis is associated with surgical procedures, hemodialysis, blood transfusion, and other conditions in which mechanical forces can lead to red blood cell rupture. Free plasma hemoglobin and heme are toxic for the vascular endothelium since heme iron promotes oxidative stress that causes endothelial activation responsible for vasoocclusive events and thrombus formation. Moreover, free hemoglobin scavenges nitric oxide, reducing its bioavailability, and heme favours ROS production, thus causing oxidative nitric oxide consumption. This results in the dysregulation of the endothelium vasodilator:vasoconstrictor balance, leading to severe vasoconstriction and hypertension. Thus, endothelial dysfunction and impairment of cardiovascular function represent a common feature of pathologic conditions associated with hemolysis. In this review, we discuss how hemoglobin/heme released following hemolysis may affect vascular function and summarise the therapeutic approaches available to limit hemolysis-driven endothelial dysfunction. Particular emphasis is put on recent data showing the beneficial effects obtained through the use of the plasma heme scavenger hemopexin in counteracting heme-mediated endothelial damage in mouse models of hemolytic diseases.


2020 ◽  
Vol 18 (1) ◽  
pp. 73-91 ◽  
Author(s):  
Hua Wang ◽  
Wajahat Mehal ◽  
Laura E. Nagy ◽  
Yaron Rotman

AbstractAlcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are the two major types of chronic liver disease worldwide. Inflammatory processes play key roles in the pathogeneses of fatty liver diseases, and continuous inflammation promotes the progression of alcoholic steatohepatitis (ASH) and nonalcoholic steatohepatitis (NASH). Although both ALD and NAFLD are closely related to inflammation, their respective developmental mechanisms differ to some extent. Here, we review the roles of multiple immunological mechanisms and therapeutic targets related to the inflammation associated with fatty liver diseases and the differences in the progression of ASH and NASH. Multiple cell types in the liver, including macrophages, neutrophils, other immune cell types and hepatocytes, are involved in fatty liver disease inflammation. In addition, microRNAs (miRNAs), extracellular vesicles (EVs), and complement also contribute to the inflammatory process, as does intertissue crosstalk between the liver and the intestine, adipose tissue, and the nervous system. We point out that inflammation also plays important roles in promoting liver repair and controlling bacterial infections. Understanding the complex regulatory process of disrupted homeostasis during the development of fatty liver diseases may lead to the development of improved targeted therapeutic intervention strategies.


1999 ◽  
Vol 82 (S 01) ◽  
pp. 32-37 ◽  
Author(s):  
Karlheinz Peter ◽  
Wolfgang Kübler ◽  
Johannes Ruef ◽  
Thomas K. Nordt ◽  
Marschall S. Runge ◽  
...  

SummaryThe initiating event of atherogenesis is thought to be an injury to the vessel wall resulting in endothelial dysfunction. This is followed by key features of atherosclerotic plaque formation such as inflammatory responses, cell proliferation and remodeling of the vasculature, finally leading to vascular lesion formation, plaque rupture, thrombosis and tissue infarction. A causative relationship exists between these events and oxidative stress in the vessel wall. Besides leukocytes, vascular cells are a potent source of oxygen-derived free radicals. Oxidants exert mitogenic effects that are partially mediated through generation of growth factors. Mitogens, on the other hand, are potent stimulators of oxidant generation, indicating a putative self-perpetuating mechanism of atherogenesis. Oxidants influence the balance of the coagulation system towards platelet aggregation and thrombus formation. Therapeutic approaches by means of antioxidants are promising in both experimental and clinical designs. However, additional clinical trials are necessary to assess the role of antioxidants in cardiovascular disease.


2020 ◽  
Vol 27 (7) ◽  
pp. 1052-1080 ◽  
Author(s):  
Evangelos Oikonomou ◽  
Gerasimos Siasos ◽  
Vasiliki Tsigkou ◽  
Evanthia Bletsa ◽  
Maria-Evi Panoilia ◽  
...  

Coronary artery disease is the leading cause of morbidity and mortality worldwide. The most common pathophysiologic substrate is atherosclerosis which is an inflammatory procedure that starts at childhood and develops throughout life. Endothelial dysfunction is associated with the initiation and progression of atherosclerosis and is characterized by the impaired production of nitric oxide. In general, endothelial dysfunction is linked to poor cardiovascular prognosis and different methods, both invasive and non-invasive, have been developed for its evaluation. Ultrasound evaluation of flow mediated dilatation of the branchial artery is the most commonly used method to assessed endothelial function while intracoronary administration of vasoactive agents may be also be used to test directly endothelial properties of the coronary vasculature. Endothelial dysfunction has also been the subject of therapeutic interventions. This review article summarizes the knowledge about evaluation of endothelial function in acute coronary syndromes and stable coronary artery disease and demonstrates the current therapeutic approaches against endothelial dysfunction.


2020 ◽  
Vol 21 (12) ◽  
pp. 1250-1263
Author(s):  
Saurabh Shrivastava ◽  
Anshita Gupta ◽  
Chanchal Deep Kaur

Background: Lymphatic filariasis is a pervasive and life-threatening disease for human beings. Currently, 893 million people in 49 countries worldwide affected by lymphatic filariasis as per WHO statistics. The concealed aspects of lymphatic diseases such as delayed disease detection, inappropriate disease imaging, the geographical outbreak of infection, and lack of preventive chemotherapy have brought this epidemic to the edge of Neglected Tropical Diseases. Many medications and natural bioactive substances have seen to promote filaricidal activity against the target parasitic species. However, the majority of failures have occurred in pharmaceutical and pharmacokinetic issues. Objective: The purpose of the study is to focus on the challenges and therapeutic issues in the treatment of filariasis. The review brings novel techniques and therapeutic approaches for combating lymphatic filariasis. It also offers significant developments and opportunities for such therapeutic interventions. Conclusion: Through this review, an attempt has made to critically evaluate the avenues of innovative pharmaceuticals and molecular targeting approaches to bring an integrated solution to combat lymphatic filariasis.


2021 ◽  
Vol 116 (1) ◽  
Author(s):  
Marius Keller ◽  
Valbona Mirakaj ◽  
Michael Koeppen ◽  
Peter Rosenberger

AbstractCardiovascular pathologies are often induced by inflammation. The associated changes in the inflammatory response influence vascular endothelial biology; they complicate the extent of ischaemia and reperfusion injury, direct the migration of immune competent cells and activate platelets. The initiation and progression of inflammation is regulated by the classical paradigm through the system of cytokines and chemokines. Therapeutic approaches have previously used this knowledge to control the extent of cardiovascular changes with varying degrees of success. Neuronal guidance proteins (NGPs) have emerged in recent years and have been shown to be significantly involved in the control of tissue inflammation and the mechanisms of immune cell activation. Therefore, proteins of this class might be used in the future as targets to control the extent of inflammation in the cardiovascular system. In this review, we describe the role of NGPs during cardiovascular inflammation and highlight potential therapeutic options that could be explored in the future.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 933
Author(s):  
Fien Demeulemeester ◽  
Karin de Punder ◽  
Marloes van Heijningen ◽  
Femke van Doesburg

Emerging data suggest that obesity is a major risk factor for the progression of major complications such as acute respiratory distress syndrome (ARDS), cytokine storm and coagulopathy in COVID-19. Understanding the mechanisms underlying the link between obesity and disease severity as a result of SARS-CoV-2 infection is crucial for the development of new therapeutic interventions and preventive measures in this high-risk group. We propose that multiple features of obesity contribute to the prevalence of severe COVID-19 and complications. First, viral entry can be facilitated by the upregulation of viral entry receptors, like angiotensin-converting enzyme 2 (ACE2), among others. Second, obesity-induced chronic inflammation and disruptions of insulin and leptin signaling can result in impaired viral clearance and a disproportionate or hyper-inflammatory response, which together with elevated ferritin levels can be a direct cause for ARDS and cytokine storm. Third, the negative consequences of obesity on blood coagulation can contribute to the progression of thrombus formation and hemorrhage. In this review we first summarize clinical findings on the relationship between obesity and COVID-19 disease severity and then further discuss potential mechanisms that could explain the risk for major complications in patients suffering from obesity.


Author(s):  
Yu Zhao ◽  
Ulf Panzer ◽  
Stefan Bonn ◽  
Christian F. Krebs

AbstractSingle-cell biology is transforming the ability of researchers to understand cellular signaling and identity across medical and biological disciplines. Especially for immune-mediated diseases, a single-cell look at immune cell subtypes, signaling, and activity might yield fundamental insights into the disease etiology, mechanisms, and potential therapeutic interventions. In this review, we highlight recent advances in the field of single-cell RNA profiling and their application to understand renal function in health and disease. With a focus on the immune system, in particular on T cells, we propose some key directions of understanding renal inflammation using single-cell approaches. We detail the benefits and shortcomings of the various technological approaches outlined and give advice on potential pitfalls and challenges in experimental setup and computational analysis. Finally, we conclude with a brief outlook into a promising future for single-cell technologies to elucidate kidney function.


2021 ◽  
Vol 9 (5) ◽  
pp. 957
Author(s):  
Tomas Hrncir ◽  
Lucia Hrncirova ◽  
Miloslav Kverka ◽  
Robert Hromadka ◽  
Vladimira Machova ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Its worldwide prevalence is rapidly increasing and is currently estimated at 24%. NAFLD is highly associated with many features of the metabolic syndrome, including obesity, insulin resistance, hyperlipidaemia, and hypertension. The pathogenesis of NAFLD is complex and not fully understood, but there is increasing evidence that the gut microbiota is strongly implicated in the development of NAFLD. In this review, we discuss the major factors that induce dysbiosis of the gut microbiota and disrupt intestinal permeability, as well as possible mechanisms leading to the development of NAFLD. We also discuss the most consistent NAFLD-associated gut microbiota signatures and immunological mechanisms involved in maintaining the gut barrier and liver tolerance to gut-derived factors. Gut-derived factors, including microbial, dietary, and host-derived factors involved in NAFLD pathogenesis, are discussed in detail. Finally, we review currently available diagnostic and prognostic methods, summarise latest knowledge on promising microbiota-based biomarkers, and discuss therapeutic strategies to manipulate the microbiota, including faecal microbiota transplantation, probiotics and prebiotics, deletions of individual strains with bacteriophages, and blocking the production of harmful metabolites.


Sign in / Sign up

Export Citation Format

Share Document