scholarly journals Downlink Linear Precoders Based on Statistical CSI for Multicell MIMO-OFDM

2017 ◽  
Vol 2017 ◽  
pp. 1-18
Author(s):  
Ebrahim Baktash ◽  
Chi-Heng Lin ◽  
Xiaodong Wang ◽  
Mahmood Karimi

With 5G communication systems on the horizon, efficient interference management in heterogeneous multicell networks is more vital than ever. This paper investigates the linear precoder design for downlink multicell multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) systems, where base stations (BSs) coordinate to reduce the interference across space and frequency. In order to minimize the overall feedback overhead in next-generation systems, we consider precoding schemes that require statistical channel state information (CSI) only. We apply the random matrix theory to approximate the ergodic weighted sum rate of the system with a closed form expression. After formulating the approximation for general channels, we reduce the results to a more compact form using the Kronecker channel model for which several multicarrier concepts such as frequency selectivity, channel tap correlations, and intercarrier interference (ICI) are rigorously represented. We find the local optimal solution for the maximization of the approximate rate using a gradient method that requires only the covariance structure of the MIMO-OFDM channels. Within this covariance structure are the channel tap correlations and ICI information, both of which are taken into consideration in the precoder design. Simulation results show that the rate approximation is very accurate even for very small MIMO-OFDM systems and the proposed method converges rapidly to a near-optimal solution that competes with networked MIMO and precoders based on instantaneous full CSI.

2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Zhen-dong Zhang ◽  
Bin Wu ◽  
Yu-mei Zhou

The combination of multiple-input multiple-output (MIMO) signal processing with orthogonal frequency-division multiplexing (OFDM) technique is one favored solution in wireless communication systems for enhancing data rate. However, the computational complexity is also linear increased with the number of data streams. Generally, multiple finite impulse response (FIR) interpolations and decimations are added to solve the multiple data streams in a MIMO OFDM system, which cause a large increase in the hardware cost. In this paper, two multipath pipelined polyphase structures for FIR interpolation and decimation to efficiently deal with the simultaneous multiple data streams are proposed. According to the proposed structures, M simultaneous data streams can be supported in the M-component polyphase interpolation or decimation with only one set of computation units. Implementation examples show that up to 56% reduction of silicon area can be obtained over the traditional polyphase structures.


The intervention has to be negated deprived of humiliation of the spectral effectiveness In broadband wireless communication systems. The intrusive overthrow of the parallel OFDM systems are called as MIMO-OFDM (Multiple Input Output Orthogonal Frequency Division Multiplexing) is brought together in our projected effort. The representation of AWGN within the signal channel and improved by the value of MSE minimum factor is chosen. Thus, the optimization is prepared for the operation of the MBA (Modified Bat Algorithm). Our proposed concepts with its results are evaluated in the platform of MATLAB.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6881
Author(s):  
Josip Lorincz ◽  
Ivana Ramljak ◽  
Dinko Begusic

Cognitive radio technology enables spectrum sensing (SS), which allows the secondary user (SU) to access vacant frequency bands in the periods when the primary user (PU) is not active. Due to its minute implementation complexity, the SS approach based on energy detection (ED) of the PU signal has been analyzed in this paper. Analyses were performed for detecting PU signals by the SU in communication systems exploiting multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) transmission technology. To perform the analyses, a new algorithm for simulating the ED process based on a square-law combining (SLC) technique was developed. The main contribution of the proposed algorithm is enabling comprehensive simulation analyses of ED performance based on the SLC method for versatile combinations of operating parameter characteristics for different working environments of MIMO-OFDM systems. The influence of a false alarm on the detection probability of PU signals impacted by operating parameters such as the signal-to-noise ratios, the number of samples, the PU transmit powers, the modulation types and the number of the PU transmit and SU receive branches of the MIMO-OFDM systems have been analyzed in the paper. Simulation analyses are performed by running the proposed algorithm, which enables precise selection of and variation in the operating parameters, the level of noise uncertainty and the detection threshold in different simulation scenarios. The presented analysis of the obtained simulation results indicates how the considered operating parameters impact the ED efficiency of symmetric and asymmetric MIMO-OFDM systems.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 92
Author(s):  
Yung-Ping Tu ◽  
Chih-Yung Chen ◽  
Kuang-Hao Lin

The massive multiple-input multiple-output systems (M-MIMO) and orthogonal frequency-division multiplexing (OFDM) are considered to be some of the most promising key techniques in the emerging 5G and advanced wireless communication systems nowadays. Not only are the benefits of applying M-MIMO and OFDM for broadband communication well known, but using them for the application of the Internet of Things (IoT) requires a large amount of wireless transmission, which is a developing topic. However, its high complexity becomes a problem when there are numerous antennas. In this paper, we provide an effective two-stage multiuser detector (MUD) with the assistance of the accelerated over-relaxation (AOR) iterative algorithm and Chebyshev acceleration for the uplink of M-MIMO OFDM systems to achieve a better balance between bit error rate (BER) performance and computational complexity. The first stage of the receiver consists of an accelerated over-relaxation (AOR)-based estimator and is intended to yield a rough initial estimate of the relaxation factor ω, the acceleration parameter γ, and transmitted symbols. In the second stage, the Chebyshev acceleration method is used for detection, and a more precise signal is produced through efficient iterative estimation. Additionally, we call this proposed scheme Chebyshev-accelerated over-relaxation (CAOR) detection. Conducted simulations show that the developed receiver, with a modest computational load, can provide superior performance compared with previous works, especially in the MU M-MIMO uplink environments.


2020 ◽  
Vol 3 (2) ◽  
pp. 1-10
Author(s):  
Maryam K. Abboud ◽  
Bayan M. Sabbar

Channel estimation is an essential part of Orthogonal Frequency Division Multiplexing (OFDM) communication systems. In this paper, two Discrete Fourier Transform (DFT) improvement algorithms are proposed and compared where the 1st one exploits channel sparsity concept while the other considers significant channel coefficients only. In the proposed algorithms; Enhanced and Sparse DFT (E-DFT and S-DFT), different number of significant channel components is selected either by a threshold determining procedure such as in    E-DFT, or through determining channel sparsity level such as in S-DFT. In the presence of Doppler frequency shifts, the Inter Symbol Interference (ISI) effect on channel coefficients is successfully reduced using the proposed estimation algorithms. Vehicular A-ITU channel model is considered with a relatively high vehicle speed up to 68 Km/h in order to test the suitability of the proposed algorithms for mobile systems. E-DFT and S-DFT improves conventional as well as previous DFT improvement methods (I-DFT) suggested by [7], [8], [9], [15]. For 64 subcarriers, S-DFT outperforms E-DFT and I-DFT by about 3dB at a BER of 0.01 with a mobility reaches 45 Km/h, and by about 0.4dB and 2.5dB at a BER of 0.02 with a mobility reaches 68Km/h.


2019 ◽  
Vol 8 (2) ◽  
pp. 4347-4353

Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO OFDM) is a key technology for contemporary communication systems due to its spectral efficiency, higher data rates, better diversity gain, good link reliability and both inter symbol interference (ISI) and multipath fading free transmission. However, due to the presence of OFDM, MIMO-OFDM suffers from high peak to average power ratio (PAPR). Even though, several schemes are available to mitigate PAPR, there is no standard solution. Selective Mapping (SLM) significantly reduces the PAPR in OFDM systems at the cost of computational complexity (CC). The CC of SLM can be reduced by proper design of SLM. This paper considers a low complexity SLM (LC SLM) scheme in which both the CC and length of the index of selected phase sequence are significantly reduced. The PAPR of an SLM-OFDM depends on the number of subcarriers in OFDM, the number of candidate blocks in SLM and selected phase sequence and this paper investigate various phase sequences and analyses their PAPR performance. Simulation results show the superior performance of Riemann sequence over the other phase sequences.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lahcen Amhaimar ◽  
Saida Ahyoud ◽  
Ali Elyaakoubi ◽  
Abdelmoumen Kaabal ◽  
Kamal Attari ◽  
...  

The transceiver combination technology, of orthogonal frequency division multiplexing (OFDM) with multiple-input multiple-output (MIMO), provides a viable alternative to enhance the quality of service and simultaneously to achieve high spectral efficiency and data rate for wireless mobile communication systems. However, the high peak-to-average power ratio (PAPR) is the main concern that should be taken into consideration in the MIMO-OFDM system. Partial transmit sequences (PTSs) is a promising scheme and straightforward method, able to achieve an effective PAPR reduction performance, but it requires an exhaustive search to find the optimum phase factors, which causes high computational complexity increased with the number of subblocks. In this paper, a reduced computational complexity PTS scheme is proposed, based on a novel swarm intelligence algorithm, called fireworks algorithm (FWA). Simulation results confirmed the adequacy and the effectiveness of the proposed method which can effectively reduce the computation complexity while keeping good PAPR reduction. Moreover, it turns out from the results that the proposed PTS scheme-based FWA clearly outperforms the hottest and most important evolutionary algorithm in the literature like simulated annealing (SA), particle swarm optimization (PSO), and genetic algorithm (GA).


2020 ◽  
Vol 29 (16) ◽  
pp. 2050257
Author(s):  
M. El Ghzaoui ◽  
A. Hmamou ◽  
J. Foshi ◽  
J. Mestoui

Orthogonal frequency division multiplexing (OFDM) is a multicarrier transmission system that can achieve high data rate over wireless channels. At the same time, multiple input multiple output OFDM (MIMO-OFDM) in wireless communication systems has been exposed to offer significant improvement over wireless technology by providing transmit diversity. It has become a promising technique for high-performance 5G broadband wireless communications. However, the main problem associated with MIMO-OFDM is that its signal exhibits high peak-to-average power ratio (PAPR), which causes nonlinear distortion and consequently performance degradation. Besides, PAPR carries weaknesses such as an increase in power consumption of high power amplifier (HPA) and analog to digital converter (ADC). Thus, 5G base stations will push up power requirements because energy consumption grows with the number of transceiver elements. So, mobile operators must find the right compromise that, on the one hand, guarantees a certain level of performance to a data flow, and, on the other hand, the energy cost generated for the deployment of the network. For this, as part of the management of power consumption, we propose MIMO constant envelope OFDM (MIMO-CE-OFDM) technique. In this work, we used MIMO-CE-OFDM to mitigate the nonlinear effect of HPA and ADC. To perform practical simulations, we have used COST 2100 MIMO channel model. In this paper, a MIMO-CE-OFDM system has been presented and analyzed under COST 2100 channel model conditions. Simulation results are given to illustrate the performance of [Formula: see text] MIMO-CE-OFDM in the presence of both HPA and ADC nonlinearity. This work shows that the effect of nonlinearity is shown to be negligible on MIMO-CE-OFDM signal.


2021 ◽  
Vol 9 (17) ◽  
pp. 26-39
Author(s):  
Hugo Wladimir Iza Benítez ◽  
Diego Javier Reinoso Chisaguano

UFMC (Universal Filtered Multi-Carrier) is a novel multi-carrier transmission technique that aims to replace the OFDM (Orthogonal Frequency Division Multiplexing) modulation technique for fifth generation (5G) wireless communication systems. UFMC, being a generalization of OFDM and FBMC (Filter Bank Multicarrier), combines the advantages of these systems and at the same time avoids their main disadvantages. Using a Matlab simulation, this article presents an analysis of the robustness of UFMC against fading effects of multipath channels without using a CP (cyclic prefix). The behavior of the UFMC system is analyzed in terms of the PSD (Power Spectral Density), BER (Bit Error Rate) and MSE (Mean Square Error). The results show that UFMC reduces the out-band side lobes produced in the PSD of the processed signal. Also, it is shown that the pilot-assisted channel estimation method applied in OFDM systems can also be applied in UFMC systems.


2016 ◽  
Vol 4 (1) ◽  
pp. 150-163 ◽  
Author(s):  
Rizky Pratama Hudhajanto ◽  
I Gede Puja Astawa ◽  
Amang Sudarsono

Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) is the most used wireless transmission scheme in the world. However, its security is the interesting problem to discuss if we want to use this scheme to transmit a sensitive data, such as in the military and commercial communication systems. In this paper, we propose a new method to increase the security of MIMO-OFDM system using the change of location of fake subcarrier. The fake subcarriers’ location is generated per packet of data using Pseudo Random sequence generator. The simulation results show that the proposed scheme does not decrease the performance of conventional MIMO-OFDM. The attacker or eavesdropper gets worse Bit Error Rate (BER) than the legal receiver compared to the conventional MIMO-OFDM system.


Sign in / Sign up

Export Citation Format

Share Document