scholarly journals Empirical Analysis and Agent-Based Modeling of the Lithuanian Parliamentary Elections

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Aleksejus Kononovicius

We analyze a parties’ vote share distribution across the polling stations during the Lithuanian parliamentary elections of 1992, 2008, and 2012. We find that the distribution is rather well fitted by the Beta distribution. To reproduce this empirical observation, we propose a simple multistate agent-based model of the voting behavior. In the proposed model, agents change the party they vote for either idiosyncratically or due to a linear recruitment mechanism. We use the model to reproduce the vote share distribution observed during the election of 1992. We discuss model extensions needed to reproduce the vote share distribution observed during the other elections.

Author(s):  
Douglas Clark ◽  
Pratim Sengupta

There is now growing consensus that K12 science education needs to focus on core epistemic and representational practices of scientific inquiry (Duschl, Schweingruber, & Shouse, 2007; Lehrer & Schauble, 2006). In this chapter, the authors focus on two such practices: argumentation and computational modeling. Novice science learners engaging in these activities often struggle without appropriate and extensive scaffolding (e.g., Klahr, Dunbar, & Fay, 1990; Schauble, Klopfer, & Raghavan, 1991; Sandoval & Millwood, 2005; Lizotte, Harris, McNeill, Marx, & Krajcik, 2003). This chapter proposes that (a) integrating argumentation and modeling can productively engage students in inquiry-based activities that support learning of complex scientific concepts as well as the core argumentation and modeling practices at the heart of scientific inquiry, and (b) each of these activities can productively scaffold the other. This in turn can lead to higher academic achievement in schools, increased self-efficacy in science, and an overall increased interest in science that is absent in most traditional classrooms. This chapter provides a theoretical framework for engaging students in argumentation and a particular genre of computer modeling (i.e., agent-based modeling), illustrates the framework with examples of the authors’ own research and development, and introduces readers to freely available technologies and resources to adopt in classrooms to engage students in the practices discussed in the chapter.


2018 ◽  
Vol 10 (12) ◽  
pp. 4623 ◽  
Author(s):  
Camelia Delcea ◽  
Liviu-Adrian Cotfas ◽  
Mostafa Salari ◽  
R. Milne

Research related to creating new and improved airplane boarding methods has seen continuous advancement, in recent years, while most of the airline companies have remained committed to the traditional boarding methods. Among the most-used boarding methods, around the world, are back-to-front and random boarding with and without assigned seats. While the other boarding methods used in practice possess strict rules for passengers’ behavior, random without assigned seats is dependent on the passengers own way of choosing the “best” seats. The aim of this paper is to meticulously model the passengers’ behavior, especially, in random boarding without assigned seats and to test its efficiency in terms of boarding time and interferences, in comparison with the other commonly-adopted methods (random boarding with assigned seats, window-middle-aisle (WilMA), back-to-front, reverse pyramid, etc.). One of the main challenges in our endeavor was the identification of the real human passengers’ way of reasoning, when selecting their seats, and creating a model in which the agents possess preferences and make decisions, as close to those decisions made by the human passengers, as possible. We model their choices based on completed questionnaires from three hundred and eighty-seven human subjects. This paper describes the resulting agent-based model and results from the simulations.


2019 ◽  
Vol 2 (1) ◽  
pp. 399-413
Author(s):  
Jeremiah A. Lasquety-Reyes

AbstractThis article presents two approaches for computer simulations of virtue ethics in the context of agent-based modeling, a simple way and a complex way. The simple way represents virtues as numeric variables that are invoked in specific events or situations. This way can easily be implemented and included in social simulations. On the other hand, the complex way requires a PECS framework: physical, cognitive, emotional, and social components need to be implemented in agents. Virtue is the result of the interaction of these internal components rather than a single variable. I argue that the complex way using the PECS framework is more suitable for simulating virtue ethics theory because it can capture the internal struggle and conflict sometimes involved in the practice of virtue. To show how the complex way could function, I present a sample computer simulation for the cardinal virtue of temperance, the virtue that moderates physical desires such as food, drink, and sex. This computer simulation is programmed in Python and builds upon the well-known Sugarscape simulation.1


Author(s):  
S. Azimi ◽  
M. R. Delavar ◽  
A. Rajabifard

<p><strong>Abstract.</strong> After the incidence of a disaster, a high demand for first-aid and a huge number of injured will emerge at the affected areas. In this paper, the optimum allocation of the medical assistance to the injured according to a multi-criteria decision making is performed by Multiplicatively Weighted Network Voronoi Diagram (MWNVD). For consideration of the allocation of the injured in the affected area to the appropriate hospitals using the MWNVD and decreasing the gap between the estimated and expected population in the MWNVDs, Particle Swarm Optimization (PSO) is applied to the MWNVDs.<br> This paper proposes a multi agent-based modeling for incorporating the allocation of the medical supplies to the injured according to the generated Voronoi Diagrams of the PSO-MWNVD, wayfinding of emergency vehicles based on the minimum travel distance and time as well as using smart city facilities to expedite the rescue operation. In the proposed model, considering the priority of the injured for receiving the medical assistance, information transfer about the condition of the injured to the hospitals prior to ambulance arrival for providing appropriate treatment, updating of emergency vehicles route based on the blocked streets and etc. are optimized.<br> The partial difference between the estimated and expected population for receiving the medical assistance in MWNVDs is computed as 37&amp;thinsp;%, while the PSO-MWNVD decreased the mentioned difference to 6&amp;thinsp;%. The relief operation time in the proposed model compared to another multi-agent rescue operation model, which uses MWNVD and does not have some facilities of the proposed model, is improved.</p>


2019 ◽  
Vol 8 (1) ◽  
pp. 25-33
Author(s):  
Ahmed Senouci ◽  
Karim Abdel Warith ◽  
Neil Eldin

 This paper presents the use of Agent Based Modeling (ABM) technique as a tool for optimum resource constrained scheduling.  The model added two features to the standard resource scheduling applications. It allowed activity interruptions when necessary and the impact of the quality of the predecessors on the successors’ duration. An illustrative example is offered to demonstrate the performance of the proposed model. ABM technique was confirmed to be a valid approach for seeking alternative solutions in resource constrained schedules. The model proved advantageous to resource-constrained schedules. It illustrated additional flexibility to the standard techniques for resource-constrained problems. The model was proven successful in minimizing the project duration under preset priority rules.


2015 ◽  
pp. 47-67
Author(s):  
Douglas B. Clark ◽  
Pratim Sengupta

There is now growing consensus that K12 science education needs to focus on core epistemic and representational practices of scientific inquiry (Duschl, Schweingruber, & Shouse, 2007; Lehrer & Schauble, 2006). In this chapter, the authors focus on two such practices: argumentation and computational modeling. Novice science learners engaging in these activities often struggle without appropriate and extensive scaffolding (e.g., Klahr, Dunbar, & Fay, 1990; Schauble, Klopfer, & Raghavan, 1991; Sandoval & Millwood, 2005; Lizotte, Harris, McNeill, Marx, & Krajcik, 2003). This chapter proposes that (a) integrating argumentation and modeling can productively engage students in inquiry-based activities that support learning of complex scientific concepts as well as the core argumentation and modeling practices at the heart of scientific inquiry, and (b) each of these activities can productively scaffold the other. This in turn can lead to higher academic achievement in schools, increased self-efficacy in science, and an overall increased interest in science that is absent in most traditional classrooms. This chapter provides a theoretical framework for engaging students in argumentation and a particular genre of computer modeling (i.e., agent-based modeling), illustrates the framework with examples of the authors' own research and development, and introduces readers to freely available technologies and resources to adopt in classrooms to engage students in the practices discussed in the chapter.


2019 ◽  
Vol 9 (20) ◽  
pp. 4376 ◽  
Author(s):  
Raghda Alqurashi ◽  
Tom Altman

Agent-based model (ABM) simulation is a bottom–up approach that can describe the phenomena generated from actions and interactions within a multiagent system. An ABM is an improvement over model simulations which only describe the global behavior of a system. Therefore, it is an appropriate technology to analyze emergent phenomena in social sciences and complex adaptive systems such as vehicular traffic and pedestrian crowds. In this paper, a hybrid agent-based modeling framework designed to automate decision-making processes during traffic congestion is proposed. The model provides drivers with real-time alternative routes, computed via a decentralized multi-agent model, that tries to achieve a system-optimal traffic distribution within an entire system, thus reducing the total travel time of all the drivers. The presented work explores a decentralized ABM technique on an autonomous microgrid that is represented through cellular automata (CA). The proposed model was applied to high-density traffic congestion events such as car accidents or lane closures, and its effectiveness was analyzed. The experimental results confirm the efficiency of the proposed model in not only accurately simulating the driver behaviors and improving vehicular traffic flows during congestion but also by suggesting changes to traffic dynamics during the simulations, such as avoiding obstacles and high-density areas and then selecting the best alternative routes. The simulation results validate the ability of the proposed model and the included decision-making sub-models to both predict and improve the behaviors and intended actions of the agents.


Author(s):  
Michael Laver ◽  
Ernest Sergenti

This chapter adapts the dynamic model of multiparty competition to take into account the possibility that party leaders take their own preferences into account when they set party policy. If they do this, they must make trade-offs between satisfying their private policy preferences and some other objective, whether this is maximizing party vote share or pleasing current party supporters. Models that specify such trade-offs have often been found intractable using traditional analytical techniques. However, they are straightforward to specify and analyze using computational agent-based modeling, though this does require a rethinking of the types of decision rules that party leaders might use. The chapter finds an analogue of the earlier finding that insatiable party leaders may win fewer votes than satiable leaders. Leaders who care only about their party's vote share may win fewer votes over the long haul than leaders who also care about their own policy preferences.


2020 ◽  
Author(s):  
Paul Layie ◽  
Vivient Corneille Kamla ◽  
Jean Claude Kamgang ◽  
Yves Sebastien Emvudu Wono

Abstract Background: In their behavior, Africans generally pour dirty water around their homes. This dirty water becomes stagnant at a given moment, which hence constitutes aquatic habitats (AH). These AH are sought after by mosquitoes for egg-laying and larval development. Recent studies have shown the effectiveness of destroying AH around host habitats (humans and animals) in reducing the incidence of malaria. In this paper, an agent-based model (ABM) is proposed for controlling the incidence of malaria through population sensitizing campaigns on the harmful effects of aquatic habitats around houses.Methods: The environment is constituted of houses, AH, mosquitoes, humans, and a hospital that will allow humans to heal themselves when they have malaria. The dynamics of malaria’s spread is linked to the dynamics of individuals (humans and mosquitoes) populations. The dynamic of the mosquito is represented by two phases: egg-laying and a phase of seeking blood. The dynamic of human is animated by the presence in the health center and houses. Their dynamic also results in hitting the mosquito when a human is bitten by it. Initially, the same number of houses and AH have been considered. Thereafter, houses are fixed and the AH are destroyed each time by 10% of the number of starting Aquatics habitats. The number of infected humans varied also from 0 to 90 which led to a total of 1001 simulations.Results: The results show that when the number of houses and AH is equal, we find approximately the same results as the field data. At each reduction of AH, the incidence and prevalence tend more and more towards 0. On the other hand, when there is no AH and infected humans in the environment, the prevalence and incidence are at 0.Conclusions: The study shows that every time we destroy the AH, it increasingly inhibits the growth of mosquitoes and malaria. But when there is no AH site, even if there are infected people in the environment, the disease disappears completely. Therefore the global destruction of the AH in an environment is to be recommended. Using many parameters in the same model is also recommended.


2020 ◽  
Author(s):  
Umberto Grandi ◽  
Jérôme Lang ◽  
Ali Ozkes ◽  
Stéphane Airiau

We consider a set of voters making a collective decision via simultaneous vote on two binary issues. Voters' preferences are captured by payoffs assigned to combinations of outcomes for each issue and they can be nonseparable: a voter's preference over an issue might be dependent on the other issue. When the collective decision in this context is reached by voting on both issues at the same time, multiple election paradoxes may arise, as studied extensively in the theoretical literature. In this paper we pursue an experimental approach and investigate the impact of iterative voting, in which groups deliberate by repeating the voting process until a final outcome is reached. Our results from experiments run in the lab show that voters tend to have an optimistic rather than a pessimistic behaviour when casting a vote on a non-separable issue and that iterated voting may in fact improve the social outcome. We provide the first comprehensive empirical analysis of individual and collective behavior in the multiple referendum setting.


Sign in / Sign up

Export Citation Format

Share Document