scholarly journals Effect of Curing Temperature on the Durability of Concrete under Highly Geothermal Environment

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yang Tang ◽  
Hui Su ◽  
Shun Huang ◽  
Chunlai Qu ◽  
Jiaqi Yang

To determine the durability of concrete in the actual temperature and humidity of the tunnel environment, this study investigates the mechanical properties, permeability of chloride ion, relative dynamic elastic modulus, and mass loss ratio of concrete specimens cured in the temperature which varied from normal, 40, 60, 75, and 90°C, and the humidity was kept at 90% continuously. Experimental results reveal that the hot temperature curing environment may benefit early stage strength development but reduce the long-term strength. It is proved that 60°C is a critical point. At above 60°C, the strength of the concrete material and its resistance to chloride ion permeability showed a decreasing trend; however, in the appropriate temperature range, the frost resistance properties of the concrete are improved with increasing temperature.

2019 ◽  
Vol 278 ◽  
pp. 01005
Author(s):  
Erica Enzaki ◽  
Takashi Sakuma ◽  
Eizou Takeshita ◽  
Shigeyuki Date

In recent years, the use of blast furnace slag material is being focused as environmental loading reduction and sustainable construction. However, in general, autogeneours shrinkage of the concrete using much amount of GGBFS is large in compared to normal concrete, therefore risk of cracking should be cared. On the other hand, strength development speed of concrete at early stage will be decreasing as the dosage of GGBFS increases, even under steam curing condition. It can be considered these points will be significant disadvantage in both productivity and quality of precast concrete. So in this study, early strength type expansive agent and setting accelerator were used in combination. As a result, it was confirmed that compressive strength at early stage is obviously increased. And steam curing temperature can be reduced about 10 degrees, and also, 600×10-6 of restraint expansion was obtained.


2011 ◽  
Vol 250-253 ◽  
pp. 262-265
Author(s):  
Jun Zhe Liu ◽  
Guo Liang Zhang ◽  
Jian Bin Chen ◽  
Zhi Min He

This paper mainly explain and expounded folding compressive strength of the different types of sea sand mortar , fly ash to the sea sand concretes mortar intensity influence as well as the chloride ion content to the sea sand concretes mortar intensity influence. The pulverized fly ash has the postponement function to the sea sand concretes early strength, the chloride ion has the promoter action to the sea sand concretes early strength. 20% pulverized fly ash be good to the sea sand concretes long-term strength development influence, can achieve the goal which enhances the sea sand concretes the long-term strength . The chloride ion is greater to the concretes early strength influence, especially in previous 3 days. Along with the time development, the chloride ion influence weakens, but the pulverized fly ash enlarges to the concretes intensity's influence factor. A two-phase arrived, the final concrete strength values close to each other.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ki-Bong Park ◽  
Takafumi Noguchi

The aim of this work is to know clearly the effects of temperature in response to curing condition, hydration heat, and outside weather conditions on the strength development of high-performance concrete. The concrete walls were designed using three different sizes and three different types of concrete. The experiments were conducted under typical summer and winter weather conditions. Temperature histories at different locations in the walls were recorded and the strength developments of concrete at those locations were measured. The main factors investigated that influence the strength developments of the obtained samples were the bound water contents, the hydration products, and the pore structure. Testing results indicated that the elevated summer temperatures did not affect the early-age strength gain of concrete made using ordinary Portland cement. Strength development was significantly increased at early ages in concrete made using belite-rich Portland cement or with the addition of fly ash. The elevated temperatures resulted in a long-term strength loss in both belite-rich and fly ash containing concrete. The long-term strength loss was caused by a reduction in the degree of hydration and an increase in the total porosity and amount of smaller pores in the material.


2021 ◽  
Vol 10 (1) ◽  
pp. 1395-1409
Author(s):  
Changjiang Liu ◽  
Xin Su ◽  
Yuyou Wu ◽  
Zhoulian Zheng ◽  
Bo Yang ◽  
...  

Abstract Nano-silica (NS) is one of the most important nanomaterials in recent years. It is used as a new cement-based composite reinforcement in building materials because of its high volcanic ash activity. In order to achieve the goal of carbon peaking and carbon neutralization, combined with the research idea of cementitious materials-reducing admixture for concrete, under the condition of reducing the amount of cement in concrete by 20%, the influence of different dosages of NS on the setting time and mechanical properties of concrete was analyzed. In addition, the shrinkage performance, impermeability, and resistance to chloride-ion permeability of concrete were also studied. The results show that under the same curing conditions and ages, when the NS dosage is 2.5%, the compressive strength and splitting tensile strength of the specimen after 28 days of curing are the highest, reaching 40.87 and 3.8 MPa, which show an increase by 6.6 and 15.15%. The shrinkage performance of concrete increases with the increase in NS dosage. In addition, when the NS dosage is 2.0%, the durability of concrete has also been greatly improved. The impermeability of concrete increased by 18.7% and the resistance to chloride-ion permeability increased by 14.7%. Through microscopic analysis it was found that NS can promote the hydration reaction, generate more hydration products such as calcium silicate hydrate (C–S–H), enhance the interfacial adhesion between the matrix and the aggregate, and form a closer interfacial transition zone. Moreover, the addition of NS also reduces the cumulative pore volume in concrete, refines the pore size, and makes the internal structure of concrete denser.


2012 ◽  
Vol 164 ◽  
pp. 492-496
Author(s):  
Qing Wang ◽  
Kun Ran ◽  
Zhao Yang Ding ◽  
Lin Ge Qiu

Mechanical properties of geopolymer concrete under early stage curing system were studied. The results showed that at the early stage of curing time, compressive strength was improved significantly with the increasing of curing temperature and curing time. The compressive strength decreased and was close to that of standard curing condition at the age of 28d as the curing age increased. In addition, prolonging the storage time at room temperature before the step of high temperature curing could increase the long-term strength.


2016 ◽  
Vol 711 ◽  
pp. 118-125
Author(s):  
Tine Aarre ◽  
Martin Kaasgaard

With the aim to test the applicability of the commonly used maturity concept introduced by Freiesleben et al [1] to modern concrete and to investigate the impact of the curing history on the compressive strength of laboratory samples cured at elevated temperatures, four concretes with different binder compositions (a pure CEM I 42.5N, CEM I 42.5N with fly ash, CEM I 52.5N with fly ash and a CEM III/B) were cured and tested at temperatures ranging from 5 to 60 °C.To test the maturity concept, the development of the compressive strength of samples cured at temperatures ranging from 5 to 60 °C were tested at maturities ranging from 1 to 28 days.To test the impact of curing history at elevated temperatures on the compressive strength, concrete samples were cured at 60°C using two different temperature scenarios: (1) at a constant temperature of 60 °C and (2) at gradually increasing temperature from the casting temperature to the maximum temperature of 60 °C.It was found that the commonly used maturity concept is still applicable to modern concrete although the activation energy is dependent on the binder composition. Concerning the impact of curing history it was found that at 28 days of maturity, the strength of concrete cured at constant temperature of 60 °C was significantly lower than that of concrete cured at 20 °C. For the concrete exposed to gradually increasing temperature up to 60 °C, only a slight decrease in strength was observed for the pure cement concretes while the strength of the binder systems with fly ash increased.


Long-term experience of application of a method of electric heating by heating wires of the monolithic concrete and reinforced concrete structures erected in winter conditions is analyzed. This method, developed by the author of the article, took a dominant position on the construction sites due to the simplicity and efficiency in comparison with the mass applied in those years, the method of electric heating of concrete with steel round and strip electrodes. The data on labor intensity, material and energy costs in comparison with the method of rod electric heating are presented. Step-by-step technological operations on preparatory works and electric heating of monolithic structures with the use of extensive hands-on material, which formed the basis for the development of technological regulations, supplemented by a number of new proposals to improve the technology of works, are concretized. In order to work out the optimal mode of heat treatment, the studies of the concrete thermal conductivity factor in the process of its heating and strength development were carried out. The method for calculation of the basic parameters of concrete electric heating is presented. For simplification of calculations, for a wide contingent of masters, superintendents and technical personnel, the nomogram , making it possible with sufficient accuracy under the construction conditions to calculate the necessary heating parameters, was developed. The necessity of grounding the heating wire remaining in the concrete to reduce the harmful effect of magnetic radiation from various appliances and household appliances on the human body is noted.


2020 ◽  
Vol 6 (1) ◽  
pp. 49-54
Author(s):  
Khabib Barnoev ◽  

The article presents the results of a study to assess the functional reserve of the kidneys against the background of a comparative study of antiaggregant therapy dipyridamole and allthrombosepin in 50 patients with a relatively early stage of chronic kidney disease. Studies have shown that long-term administration of allthrombosepin to patients has resulted in better maintenance of kidney functional reserves. Therefore, our research has once again confirmed that diphtheridamol, which is widely used as an antiaggregant drug in chronic kidney disease, does not lag behind the domestic raw material allthrombosepin


Sign in / Sign up

Export Citation Format

Share Document