scholarly journals Comprehensive Optimization of Dual Threshold Independent-Gate FinFET and SRAM Cells

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Haiyan Ni ◽  
Jianping Hu ◽  
Huishan Yang ◽  
Haotian Zhu

Independent-Gate (IG) FinFET is a promising device in circuit applications due to its two separated gates, which can be used independently. In this paper, we proposed a comprehensive method to optimize the Dual Threshold (DT) IG FinFET devices by carrying out modulations for the gate electrode work function, oxide thickness, and silicon body thickness. Titanium nitride (TiNx) is used as the tunable work function gate electrode for good performances. The thicknesses of the gate oxide and silicon body are swept by TCAD simulations to obtain the appropriate values. The verification simulation of the optimized transistors shows that the DT IG FinFETs can realize merging parallel and series transistors, respectively, and the current characteristics of the transistors are improved significantly. By extracting the BSIM-IMG model parameters, we can simulate the circuits composed of the proposed DT IG FinFET by using HSPICE with BSIM-IMG model. As practical examples, we optimized two novel 7T SRAM cells using DT IG FinFETs. HSPICE simulation results indicate that the new SRAM cells obtain higher write margin and read static noise margin with lower leakage power consumption than the other implementations.

2003 ◽  
Vol 765 ◽  
Author(s):  
S. Van Elshocht ◽  
R. Carter ◽  
M. Caymax ◽  
M. Claes ◽  
T. Conard ◽  
...  

AbstractBecause of aggressive downscaling to increase transistor performance, the physical thickness of the SiO2 gate dielectric is rapidly approaching the limit where it will only consist of a few atomic layers. As a consequence, this will result in very high leakage currents due to direct tunneling. To allow further scaling, materials with a k-value higher than SiO2 (“high-k materials”) are explored, such that the thickness of the dielectric can be increased without degrading performance.Based on our experimental results, we discuss the potential of MOCVD-deposited HfO2 to scale to (sub)-1-nm EOTs (Equivalent Oxide Thickness). A primary concern is the interfacial layer that is formed between the Si and the HfO2, during the MOCVD deposition process, for both H-passivated and SiO2-like starting surfaces. This interfacial layer will, because of its lower k-value, significantly contribute to the EOT and reduce the benefit of the high-k material. In addition, we have experienced serious issues integrating HfO2 with a polySi gate electrode at the top interface depending on the process conditions of polySi deposition and activation anneal used. Furthermore, we have determined, based on a thickness series, the k-value for HfO2 deposited at various temperatures and found that the k-value of the HfO2 depends upon the gate electrode deposited on top (polySi or TiN).Based on our observations, the combination of MOCVD HfO2 with a polySi gate electrode will not be able to scale below the 1-nm EOT marker. The use of a metal gate however, does show promise to scale down to very low EOT values.


Author(s):  
Jitendra Kumar Mishra ◽  
Lakshmi Likhitha Mankali ◽  
Kavindra Kandpal ◽  
Prasanna Kumar Misra ◽  
Manish Goswami

The present day electronic gadgets have semiconductor memory devices to store data. The static random access memory (SRAM) is a volatile memory, often preferred over dynamic random access memory (DRAM) due to higher speed and lower power dissipation. However, at scaling down of technology node, the leakage current in SRAM often increases and degrades its performance. To address this, the voltage scaling is preferred which subsequently affects the stability and delay of SRAM. This paper therefore presents a negative bit-line (NBL) write assist circuit which is used for enhancing the write ability while a separate (isolated) read buffer circuit is used for improving the read stability. In addition to this, the proposed design uses a tail (stack) transistor to decrease the overall static power dissipation and also to maintain the hold stability. The comparison of the proposed design has been done with state-of-the-art work in terms of write static noise margin (WSNM), write delay, read static noise margin (RSNM) and other parameters. It has been observed that there is an improvement of 48%, 11%, 19% and 32.4% in WSNM while reduction of 33%, 39%, 48% and 22% in write delay as compared to the conventional 6T SRAM cell, NBL, [Formula: see text] collapse and 9T UV SRAM, respectively.


2021 ◽  
Vol 7 ◽  
pp. 22-34
Author(s):  
Vinod Kumar ◽  
Ram Murti Rawat

A paper that examines the factors thataffect the Static Noise Margin (SNM) of a StaticRandom Access memories. At an equivalent time,they specialise in optimizing Read and Writeoperation of 8T SRAM cell which is best than 6TSRAM cell Using Swing Restoration Dual NodeVoltage. The read and Write operation and improveStability analysis. This SRAM technique on thecircuit or architecture level is required to improveread and write operation. during this paperComparative Analysis of 6T and 8T SRAM Cellswith Improved Read and Write Margin is completedfor 180 nm Technology with Cadence Virtuososchematics Tool.This Paper is organized as follows: thecharacteristics of 6T SRAM cell are described arerepresented in section VIII. In section IX, proposed8T SRAM cell is described. In section X, Standard8T SRAM cell is described. Section XI includes thesimulation results which give comparison of variousparameters of 6T and 8T SRAM cells. In Section XIISimulation Results and DC analysis and sectionXIII conclusion the work.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2619
Author(s):  
Jongwoon Yoon ◽  
Kwangsoo Kim

In this study, a novel MOS-channel diode embedded in a SiC superjunction MOSFET (MCD SJ-MOSFET) is proposed and analyzed by means of numerical TCAD simulations. Owing to the electric field shielding effect of the P+ body and the P-pillar, the channel diode oxide thickness (tco) of MCD can be set to very thin while achieving a low maximum oxide electric field (EMOX) under 3 MV/cm. Therefore, the turn-on voltage (VF) of the proposed structure was 1.43 V, deactivating the parasitic PIN body diode. Compared with the SJ-MOSFET, the reverse recovery time (trr) and the reverse recovery charge (Qrr) were improved by 43% and 59%, respectively. Although there is a slight increase in specific on-resistance (RON), the MCD SJ-MOSFET shows very low input capacitance (CISS) and gate to drain capacitance (CGD) due to the reduced active gate. Therefore, significantly improved figures of merit RON × CGD by a factor of 4.3 are achieved compared to SJ-MOSFET. As a result, the proposed structure reduced the switching time as well as the switching energy loss (ESW). Moreover, electro-thermal simulation results show that the MCD SJ-MOSFET has a short circuit withstand time (tSC) more than twice that of the SJ-MOSFET at various DC bus voltages (400 and 600 V).


Sign in / Sign up

Export Citation Format

Share Document