scholarly journals Effect of Ferronickel Slag Powder on Microhydration Heat, Flow, Compressive Strength, and Drying Shrinkage of Mortar

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Bong-Suk Cho ◽  
Young-Uk Kim ◽  
Do-Bin Kim ◽  
Se-Jin Choi

This paper investigates the effect of ferronickel slag powder on microhydration heat, flow, compressive strength, and drying shrinkage of mortar. In South Korea, approximately two million tons of ferronickel slag, a by-product of the nickel industry, are produced every year. However, a considerable amount of this by-product is treated as waste and dumped in landfills. Ferronickel slag powder was used to replace Portland cement at a ratio of 15% by binder mass. In addition, the mortar test with other cementitious materials, including blast-furnace slag powder and fly ash, was conducted and compared with the sample containing ferronickel slag powder. According to this investigation, the microhydration heat of mortar and concrete can be reduced with the appropriate use of ferronickel slag powder. In addition, in order to achieve higher concrete compressive strengths, it is apparently advantageous to use the ferronickel slag powder and fly ash together rather than using ferronickel slag powder alone.

2021 ◽  
Vol 11 (3) ◽  
pp. 1037
Author(s):  
Se-Jin Choi ◽  
Ji-Hwan Kim ◽  
Sung-Ho Bae ◽  
Tae-Gue Oh

In recent years, efforts to reduce greenhouse gas emissions have continued worldwide. In the construction industry, a large amount of CO2 is generated during the production of Portland cement, and various studies are being conducted to reduce the amount of cement and enable the use of cement substitutes. Ferronickel slag is a by-product generated by melting materials such as nickel ore and bituminous coal, which are used as raw materials to produce ferronickel at high temperatures. In this study, we investigated the fluidity, microhydration heat, compressive strength, drying shrinkage, and carbonation characteristics of a ternary cement mortar including ferronickel-slag powder and fly ash. According to the test results, the microhydration heat of the FA20FN00 sample was slightly higher than that of the FA00FN20 sample. The 28-day compressive strength of the FA20FN00 mix was approximately 39.6 MPa, which was higher than that of the other samples, whereas the compressive strength of the FA05FN15 mix including 15% of ferronickel-slag powder was approximately 11.6% lower than that of the FA20FN00 mix. The drying shrinkage of the FA20FN00 sample without ferronickel-slag powder was the highest after 56 days, whereas the FA00FN20 sample without fly ash showed the lowest shrinkage compared to the other mixes.


2017 ◽  
Vol 865 ◽  
pp. 282-288 ◽  
Author(s):  
Jul Endawati ◽  
Rochaeti ◽  
R. Utami

In recent years, sustainability and environmental effect of concrete became the main concern. Substituting cement with the other cementitious material without decreasing mechanical properties of a mixture could save energy, reduce greenhouse effect due to mining, calcination and limestone refining. Therefore, some industrial by-products such as fly ash, silica fume, and Ground Iron Blast Furnace Slag (GIBFS) would be used in this study to substitute cement and aggregate. This substitution would be applied on the porous concrete mixture to minimize the environmental effect. Slag performance will be optimized by trying out variations of fly ash, silica fume, and slag as cement substitution material in mortar mixture. The result is narrowed into two types of substitution. First, reviewed from the fly ash substitution effect on binder material, highest compressive strength 16.2 MPa was obtained from mixture composition 6% fly ash, 3% silica fume and 17% grinding granular blast-furnace slag. Second, reviewed from slag types as cement substitution and silica fume substitution, highest compressive strength 15.2 MPa was obtained from mortar specimens with air-cooled blast furnace slag. It composed with binder material 56% Portland composite cement, 15% fly ash, 3% silica fume and 26% air-cooled blast furnace slag. Considering the cement substitution, the latter mixture was chosen.


Author(s):  
Hitoshi Owada ◽  
Tomoko Ishii ◽  
Mayumi Takazawa ◽  
Hiroyasu Kato ◽  
Hiroyuki Sakamoto ◽  
...  

A “realistic alteration model” is needed for various cementitious materials. Hypothetical settings of mineral composition calculated based on the chemical composition of cement, such as Atkins’s model, have been used to estimate the alteration of cementitious material. However, model estimates for the concentration of certain elements such as Al and S in leachate have been different from experimental values. In a previous study, we created settings for a mineralogical alteration model by taking the initial chemical composition of cementitious materials from analysis results in experiments and applying their ratios to certain hydrated cement minerals, then added settings for secondary generated minerals in order to account for Ca leaching. This study of alteration estimates for ordinary portland cement (OPC) in groundwater showed that the change in Al and S concentrations in simulated leachate approached values for actual leachate[1]. In the present study, we develop an appropriate mineral alteration model for blended cementitious materials and conduct batch-type leaching experiments that use crushed samples of blast furnace slag cement (BFSC), silica cement (SC), and fly ash cement (FAC). The cement blends in these experiments used OPC blended with blast furnace slag of 70 wt.%, silica cement consisting of an amorphous silica fine powder of 20 wt.%, and fly ash of 30 wt.%. De-ionized water was used as the leaching solution. The solid-liquid ratios in the leaching tests were varied in order to simulate the alteration process of cement hydrates. The compositions of leachate and minerals obtained from leaching tests were compared with those obtained from models using hypothetical settings of mineral composition. We also consider an alteration model that corresponds to the diversity of these materials. As a result of applying the conventional OPC model to blended cementitious materials, the estimated Al concentration in the aqueous solution was significantly different from the measured concentration. We therefore propose an improved model that takes better account of Al behavior by using a more reliable initial mineral model for Al concentration in the solution.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3448
Author(s):  
Chenhui Jiang ◽  
Aiying Wang ◽  
Xufan Bao ◽  
Zefeng Chen ◽  
Tongyuan Ni ◽  
...  

This paper presents an experimental investigation on geopolymer coatings (GPC) in terms of surface protection of civil structures. The GPC mixtures were prepared with a quadruple precursor simultaneously containing fly ash (FA), ground granulated blast-furnace slag (GBFS), metakaolin (MK), and Portland cement (OPC). Setting time, compressive along with adhesive strength and permeability, were tested and interpreted from a perspective of potential applications. The preferred GPC with favorable setting time (not shorter than 120 min) and desirable compressive strength (not lower than 35 MPa) was selected from 85 mixture formulations. The results indicate that balancing strength and setting behavior is viable with the aid of the multi-componential precursor and the mixture design based on total molar ratios of key oxides or chemical elements. Adhesive strength of the optimized GPC mixtures was ranged from 1.5 to 3.4 MPa. The induced charge passed based on a rapid test of coated concrete specimens with the preferred GPC was 30% lower than that of the uncoated ones. Setting time of GPC was positively correlated with η[Si/(Na+Al)]. An abrupt increase of setting time occurred when the molar ratio was greater than 1.1. Compressive strength of GPC was positively affected by mass contents of ground granulated blast furnace slag, metakaolin and ordinary Portland cement, and was negatively affected by mass content of fly ash, respectively. Sustained seawater immersion impaired the strength of GPC to a negligible extent. Overall, GPC potentially serves a double purpose of satisfying the usage requirements and achieving a cleaner future.


2020 ◽  
Vol 40 (2) ◽  
Author(s):  
Daniela Eugenia Angulo-Ramírez ◽  
William Gustavo Valencia-Saavedra ◽  
Ruby Mejía de Gutiérrez

Concretes based on alkaliactivated binders have attracted considerable attention as new alternative construction materials, which can substitute Portland Cement (OPC) in several applications. These binders are obtained through the chemical reaction between an alkaline activator and reactive aluminosilicate materials, also named precursors. Commonly used precursors are fly ash (FA), blast furnace slag (GBFS), and metakaolin. The present study evaluated properties such as compressive strength, rate of water absorption (sorptivity), and chloride permeability in two types of alkaliactivated concretes (AAC): FA/GBFS 80/20 and GBFS/OPC 80/20. OPC and GBFS/OPC* concretes without alkaliactivation were used as reference materials. The highest compressive strength was observed in the FA/GBFS concrete, which reported 26,1% greater strength compared to OPC concrete after 28 days of curing. The compressive strength of alkaliactivated FA/GBFS 80/20 and GBFS/OPC 80/20 was 61 MPa and 42 MPa at 360 days of curing, respectively. These AAC showed low permeability to the chloride ion and a reduced water absorption. It is concluded that these materials have suitable properties for various applications in the construction sector.


2013 ◽  
Vol 357-360 ◽  
pp. 1062-1065 ◽  
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Song Hui Yun ◽  
Do Gyeum Kim ◽  
Jea Myoung Noh

This paper presents the results of an experimental study on the compressive strength, splitting tensile strength and modulus of elasticity characteristics of high performance concrete. These tests were carried out to evaluate the mechanical properties of HPC for up to 7 and 28 days. Mixtures were prepared with water to binder ratio of 0.40. Two mixtures were containing fly ash at 25%, silica fume at 5% cement replacement, respectively. Another mixture was contains blast furnace slag and fly ash at 25%. Three standard 100¥a200 cylinder specimens were prepared. HPC showed improvement in the compressive strength and splitting tensile strength when ordinary Portland cement was replaced with silica fume. Compare with specimens FA25 and BS25FA25, specimen SF5 showed much more modulus of elasticity. It shows that the use of the blast furnace slag of 25% and fly ash of 25% cement replacement has caused a small increase in compressive strength and splitting tensile strength and modulus of elasticity compared to the only use of fly ash of 25% at 28days. The results indicated that the use of blast furnace slag or silica fume provided the good performance compare to fly ash when the mechanical properties of the high performance concretes were taken into account.


Sign in / Sign up

Export Citation Format

Share Document