scholarly journals Multidrug-Resistant Bacteria Associated with Cell Phones of Healthcare Professionals in Selected Hospitals in Saudi Arabia

Author(s):  
Saeed Banawas ◽  
Ahmed Abdel-Hadi ◽  
Mohammed Alaidarous ◽  
Bader Alshehri ◽  
Abdul Aziz Bin Dukhyil ◽  
...  

Cell phones may be an ideal habitat for colonization by bacterial pathogens, especially in hot climates, and may be a reservoir or vehicle in transmitting nosocomial infections. We investigated bacterial contamination on cell phones of healthcare workers in three hospitals in Saudi Arabia and determined antibacterial resistance of selected bacteria. A questionnaire was submitted to 285 healthcare workers in three hospitals, and information was collected on cell phone usage at the work area and in the toilet, cell phone cleaning and sharing, and awareness of cell phones being a source of infection. Screening on the Vitek 2 Compact system (bioMérieux Inc., USA) was done to characterize bacterial isolates. Of the 60 samples collected from three hospitals, 38 (63.3%) were positive with 38 bacterial isolates (4 Gram-negative and 34 Gram-positive bacteria). We found 38.3% of cell phones were contaminated with coagulase-negative staphylococci, particularly Staphylococcus epidermidis (10 isolates). Other bacterial agents identified were S. aureus, S. hominis, Alloiococcus otitis, Vibrio fluvialis, and Pseudomonas stutzeri. Antimicrobial susceptibility testing showed that most coagulase-negative staphylococci were resistant to benzylpenicillin, erythromycin, and rifampicin. Eight isolates were resistant to oxacillin, specifically S. epidermidis (3), S. hominis (2), and S. warneri (2). A. otitis, a cause of acute otitis media showed multidrug resistance. One isolate, a confirmed hetero-vancomycin intermediate-resistant S. aureus, was resistant to antibiotics, commonly used to treat skin infection. There was a significant correlation between the level of contamination and usage of cell phone at toilet and sharing. Our findings emphasize the importance of hygiene practices in cell phone usage among healthcare workers in preventing the transmission of multidrug-resistant microbes.

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1530
Author(s):  
Amanuel Balemi ◽  
Balako Gumi ◽  
Kebede Amenu ◽  
Sisay Girma ◽  
Muuz Gebru ◽  
...  

A study was carried out from August 2017 to February 2018 on lactating dairy cows, one-humped dromedary camels, and goats to determine mastitis in the Bule Hora and Dugda Dawa districts of in Southern Ethiopia. Milk samples from 564 udder quarters and udder halves from 171 animals consisting of 60 dairy cows, 51 camels, and 60 goats were tested for mastitis. Sixty-four positive udder milk samples were cultured, and bacterial mastitis pathogens were isolated and identified. The antibiotic resistance of bacterial isolates from milk with mastitis was tested against nine antimicrobials commonly used in the study area. Cow- and quarter-level prevalence of mastitis in dairy cows, camels, and goats was 33.3%, 26.3%, and 25% and 17.6%, 14.5%, and 20%, respectively. In cattle, the prevalence was significantly higher in Dugda Dawa than in Bule Hora. Major bacterial isolates were coagulase-negative Staphylococcus species (39.1%), S. aureus (17.2%), S. hyicus (14.1%), and S. intermedius and Escherichia coli (9.4% each). In camels, udder abnormality and mastitis were significantly higher in late lactation than in early lactation. Mastitis tends to increase with parity in camels. E. coli isolates were highly resistant to spectinomycin, vancomycin, and doxycycline, whereas most S. aureus isolates were multidrug-resistant. Most of the rural and periurban communities in this area consume raw milk, which indicates a high risk of infection with multidrug-resistant bacteria. We recommend a community-focused training program to improve community awareness of the need to boil milk and the risk of raw milk consumption.


2010 ◽  
Vol 54 (11) ◽  
pp. 4684-4693 ◽  
Author(s):  
George G. Zhanel ◽  
Melanie DeCorby ◽  
Heather Adam ◽  
Michael R. Mulvey ◽  
Melissa McCracken ◽  
...  

ABSTRACT A total of 5,282 bacterial isolates obtained between 1 January and 31 December 31 2008, inclusive, from patients in 10 hospitals across Canada as part of the Canadian Ward Surveillance Study (CANWARD 2008) underwent susceptibility testing. The 10 most common organisms, representing 78.8% of all clinical specimens, were as follows: Escherichia coli (21.4%), methicillin-susceptible Staphylococcus aureus (MSSA; 13.9%), Streptococcus pneumoniae (10.3%), Pseudomonas aeruginosa (7.1%), Klebsiella pneumoniae (6.0%), coagulase-negative staphylococci/Staphylococcus epidermidis (5.4%), methicillin-resistant S. aureus (MRSA; 5.1%), Haemophilus influenzae (4.1%), Enterococcus spp. (3.3%), Enterobacter cloacae (2.2%). MRSA comprised 27.0% (272/1,007) of all S. aureus isolates (genotypically, 68.8% of MRSA were health care associated [HA-MRSA] and 27.6% were community associated [CA-MRSA]). Extended-spectrum β-lactamase (ESBL)-producing E. coli occurred in 4.9% of E. coli isolates. The CTX-M type was the predominant ESBL, with CTX-M-15 the most prevalent genotype. MRSA demonstrated no resistance to ceftobiprole, daptomycin, linezolid, telavancin, tigecycline, or vancomycin (0.4% intermediate intermediate resistance). E. coli demonstrated no resistance to ertapenem, meropenem, or tigecycline. Resistance rates with P. aeruginosa were as follows: colistin (polymyxin E), 0.8%; amikacin, 3.5%; cefepime, 7.2%; gentamicin, 12.3%; fluoroquinolones, 19.0 to 24.1%; meropenem, 5.6%; piperacillin-tazobactam, 8.0%. A multidrug-resistant (MDR) phenotype occurred frequently in P. aeruginosa (5.9%) but uncommonly in E. coli (1.2%) and K. pneumoniae (0.9%). In conclusion, E. coli, S. aureus (MSSA and MRSA), P. aeruginosa, S. pneumoniae, K. pneumoniae, H. influenzae, and Enterococcus spp. are the most common isolates recovered from clinical specimens in Canadian hospitals. The prevalence of MRSA was 27.0% (of which genotypically 27.6% were CA-MRSA), while ESBL-producing E. coli occurred in 4.9% of isolates. An MDR phenotype was common in P. aeruginosa.


2021 ◽  
Author(s):  
Mareliza Possa de Menezes ◽  
Mariana Borzi ◽  
Mayara Ruaro ◽  
Marita Cardozo ◽  
Fernando Ávila ◽  
...  

Abstract The aim of this study was to evaluate the prevalence and antimicrobial resistance profile of Gram-positive cocci and Gram-negative bacilli isolated from the surgical environment. All samples were collected during the intraoperative period of clean/clean-contaminated (G1) and contaminated (G2) surgery. A total of 150 samples were collected from the surgical wound in the beginning (n = 30) and end (n = 30) of the procedure, surgeon’s hands before (n = 30) and after (n = 30) antisepsis and the surgical environment (n = 30). Forty-three isolates with morphological and biochemical characteristics of Staphylococcus spp. and 13 of Gram-negative bacilli were obtained. Coagulase-negative staphylococci (85.71% [18/21]), coagulase-positive staphylococci (9.52% [2/21]) and Pseudomonas spp. (47.52% [1/21]) in G1, and coagulase-negative staphylococci (40% [14/35]), coagulase-positive staphylococci (20% [7/35]), Proteus spp. (17.14% [6/35]), E. coli (8.57% [3/35]), Pseudomonas spp. (2.86% [1/35]) and Salmonella spp. (2.86 [1/35]) in G2 were more frequently isolated, and a high incidence of multidrug resistance was observed in coagulase-negative staphylococci (87.5% [28/32]), coagulase-positive staphylococci (100% [11/11]) and Gram-negative bacilli (76.92% [10/13]). Methicillin-resistant Staphylococcus spp. accounted for 83.72% (36/43) of the Staphylococcus strains. Gram-negative bacilli cefotaxime-resistance constituted 81.82% (9/11) and imipenem resistance constituted 53.85% (7/13). The high rate of resistance of commensal bacteria found in our study is worrying. Coagulase-negative staphylococci are community pathogens related to nosocomial infections in human and veterinary hospitals, their presence in healthy patients and in veterinary professionals represent an important source of infection in the one health context. Continuous surveillance and application of antimicrobial stewardship programs are essential in the fight against this threat.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Mohammed Alaidarous ◽  
Meshal Alanazi ◽  
Ahmed Abdel-Hadi

This study highlights the level of microbial contamination of waterpipe components in selected area of Saudi Arabia and the resistance of selected bacteria to different antibiotics was determined. A series of biochemical tests, microscopic examination, and screening on Vitek 2 compact (bioMérieux Inc., USA) system were done to characterize the bacterial isolates. Out of 132 samples investigated, 7 mouthpiece samples and 48 water bowl samples showed positivity on culture. The percentage of contamination rate was higher in water bowl (69.69%) than in mouthpieces (10.6%) for all selected areas. A total of 55 bacterial isolates were identified which included Gram-negative (28) and Gram-positive (27) bacteria. Antimicrobial susceptibility data showed more resistance to bacteria isolated from water bowl than bacteria isolated from mouthpiece. In addition, one isolate which was confirmed as methicillin-resistant Staphylococcus aureus and Klebsiella pneumoniae was resistant to antibiotics which are commonly used to treat pneumonia. Water bowl of waterpipe instrument is significantly contaminated with different bacterial pathogens including multidrug-resistant and pneumonia causing bacteria, which are a real health concern among waterpipe smokers. The presented data could assist public health professionals to raise the concerns regarding cleaning practices of waterpipe components and highlights the risk posed among the waterpipe smokers.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Silpi Basak ◽  
Priyanka Singh ◽  
Monali Rajurkar

Background and Objective. Antimicrobial resistance is now a major challenge to clinicians for treating patients. Hence, this short term study was undertaken to detect the incidence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) bacterial isolates in a tertiary care hospital.Material and Methods. The clinical samples were cultured and bacterial strains were identified in the department of microbiology. The antibiotic susceptibility profile of different bacterial isolates was studied to detect MDR, XDR, and PDR bacteria.Results. The antibiotic susceptibility profile of 1060 bacterial strains was studied. 393 (37.1%) bacterial strains were MDR, 146 (13.8%) strains were XDR, and no PDR was isolated. All (100%) Gram negative bacterial strains were sensitive to colistin whereas all (100%) Gram positive bacterial strains were sensitive to vancomycin.Conclusion. Close monitoring of MDR, XDR, or even PDR must be done by all clinical microbiology laboratories to implement effective measures to reduce the menace of antimicrobial resistance.


2012 ◽  
Vol 40 (4) ◽  
pp. 1045-1051 ◽  
Author(s):  
Daniel J. Morgan ◽  
Elizabeth Rogawski ◽  
Kerri A. Thom ◽  
J. Kristie Johnson ◽  
Eli N. Perencevich ◽  
...  

2015 ◽  
Vol 9 (01) ◽  
pp. 029-034 ◽  
Author(s):  
Thiago César Nascimento ◽  
Vânia Lúcia Da Silva ◽  
Alessandra Barbosa Ferreira-Machado ◽  
Cláudio Galuppo Diniz

Introduction: Healthcare waste (HCW) might potentially harbor infective viable microorganisms in sanitary landfills. We investigated the antimicrobial susceptibility patterns and the occurrence of the mecA gene in coagulase-negative Staphylococcus strains (CoNS) recovered from the leachate of the HCW in an untreated sanitary landfill. Methodology: Bacterial identification was performed by physiological and molecular approaches, and minimum inhibitory concentrations (MICs) of antimicrobial drugs were determined by the agar dilution method according to CLSI guidelines. All oxacillin-resistant bacteria were screened for the mecA gene. Results: Out of 73 CoNS, seven different species were identified by 16S rDNA sequencing: Staphylococcus felis (64.4%; n = 47), Staphylococcus sciuri (26.0%; n = 19), Staphylococcus epidermidis (2.7%; n = 2), Staphylococcus warneri (2.7%; n = 2), Staphylococcus lentus (1.4%; n = 1), Staphylococcus saprophyticus (1.4%; n = 1), and Staphylococcus haemolyticus (1.4%; n = 1). Penicillin was the least effective antimicrobial (60.3% of resistance; n = 44) followed by erythromycin (39.8%; n = 29), azithromycin (28.8%; n = 21), and oxacillin (16.5%; n = 12). The most effective drug was vancomycin, for which no resistance was observed, followed by gentamicin and levofloxacin, for which only intermediate resistance was observed (22%, n = 16 and 1.4%, n = 1, respectively). Among the oxacillin-resistant strains, the mecA gene was detected in two isolates. Conclusions: Considering the high antimicrobial resistance observed, our results raise concerns about the survival of putative bacterial pathogens carrying important resistance markers in HCW and their environmental spread through untreated residues discharged in sanitary landfills.


2011 ◽  
Vol 55 (9) ◽  
pp. 4038-4043 ◽  
Author(s):  
Thierry Naas ◽  
Ayla Ergani ◽  
Amélie Carrër ◽  
Patrice Nordmann

ABSTRACTAn in-house quantitative real-time PCR (qPCR) assay using TaqMan chemistry has been developed to detect NDM-1 carbapenemase genes from bacterial isolates and directly from stool samples. The qPCR amplification ofblaNDM-1DNA was linear over 10 log dilutions (r2= 0.99), and the amplification efficiency was 1.03. The qPCR detection limit was reproducibly 1 CFU, or 10 plasmid molecules, and there was no cross-reaction with DNA extracted from several multidrug-resistant bacteria harboring other β-lactam resistance genes. Feces spiked with decreasing amounts of enterobacterial isolates producing NDM-1 were spread on ChromID ESBL and on CHROMagar KPC media and were subjected to the qPCR. The limits of carbapenem-resistant bacterial detection from stools was reproducibly 1 × 101to 3 × 101CFU/100 mg feces with ChromID ESBL medium. The CHROMagar KPC culture medium had higher limits of detection (1 × 101to 4 × 103CFU/ml), especially with bacterial isolates having low carbapenem MICs. The limits of detection with the qPCR assay were reproducibly below 1 × 101CFU/100 mg of feces by qPCR assay. Samples spiked with NDM-1-negative bacteria were negative by qPCR. The sensitivity and specificity of theblaNDM-1qPCR assay on spiked samples were 100% in both cases. Using an automated DNA extraction system (QIAcube system), the qPCR assay was reproducible. The use of qPCR is likely to shorten the time forblaNDM-1detection from 48 h to 4 h and will be a valuable tool for outbreak follow-up in order to rapidly isolate colonized patients and assign them to cohorts.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Belayneh Regasa Dadi ◽  
Eyayu Girma ◽  
Mheret Tesfaye ◽  
Mohamed Seid

Background. Antimicrobials used for the treatment and prevention of bacterial infections are mainly released nonmetabolized into the aquatic environment via wastewater. Sometimes, unused therapeutic drugs are released down the drains that could act as selective pressure for the development of resistance. The aim of this study was to assess the bacteriological profile of wastewater in health facilities and determine antibiotic susceptibility patterns of bacterial isolates. Methods. A cross-sectional study was conducted from October 1 to December 26, 2020, in health facility wastewater. A total of 128 samples were collected from health facilities for bacteriological analysis and antimicrobial susceptibility testing. Result. A total of 128 samples were processed, and 81 bacterial isolates were recovered. The most common bacterial isolates were S. aureus (16/81 (19.8%)) followed by Klebsiella spp. (15/81 (18.5%)), E. coli (13/81 (16%)), P. aeruginosa (10/81 (12.3%)), Enterobacter spp. (8/81 (9.9%)), Citrobacter spp. (7/81 (8.6%)), coagulase-negative Staphylococcus (5/81 (6.2%)), Salmonella spp. (5/81 (6.2%)), and Shigella spp. (2/81 (2.5%)). A majority of isolates were resistant to ampicillin (62/81 (76.5%)). Only few isolates were resistant to ciprofloxacin (11/81 (13.6%)), chloramphenicol (13/81 (16%)), and kanamycin (8/54 (14.8%)). A majority of bacterial isolates (57/81 (70.4%)) were multidrug resistant (MDR). Conclusion. Wastewater from the health facilities contains antibiotic-resistant including multidrug-resistant bacteria. Therefore, health facility wastewater should be treated by appropriate wastewater treatment before being released into the environment.


Author(s):  
Asghar Ali ◽  
Insha Sultan ◽  
Aftab Hossain Mondal ◽  
Mohammad Tahir Siddiqui ◽  
Firdoos Ahmad Gogry ◽  
...  

Abstract Antimicrobial resistance is not restricted to clinics but also spreading fast in the aquatic environment. This study focused on the prevalence and diversity of extended-spectrum β-lactamase (ESBL) genes among bacteria from lentic and effluent water in Delhi-NCR, India. Phenotypic screening of 436 morphologically distinct bacterial isolates collected from diverse sites revealed that 106 (∼24%) isolates were ESBL positive. Antibiotic profiling showed that 42, 60, 78 and 59% ESBL producing isolates collected from Ghazipur slaughterhouse, Lodhi garden pond, Hauz Khas lake and Jasola wastewater treatment plant, respectively, were multidrug-resistant (MDR). The multiple antibiotic resistance (MAR) index varied from 0.20 to 0.32 among selected locations. The prevalence of ESBL gene variants blaSHV, blaTEM and blaCTX-M were found to be 17.64, 35.29 and 64%, respectively. Furthermore, the analysis of obtained gene sequences showed three variants of blaCTX-M (15, 152 and 205) and two variants of blaTEM (TEM-1 and TEM-116) among ESBLs producers. The co-existence of 2–3 gene variants was recorded among 48% ESBL positive isolates. New reports from this study include the blaCTX-M gene in Acinetobacter lwoffii, Enterobacter ludwigii, Exiguobacterium mexicanum and Aeromonas caviae. Furthermore, the identification of blaTEM and blaSHV in an environmental isolate of A. caviae is a new report from India.


Sign in / Sign up

Export Citation Format

Share Document